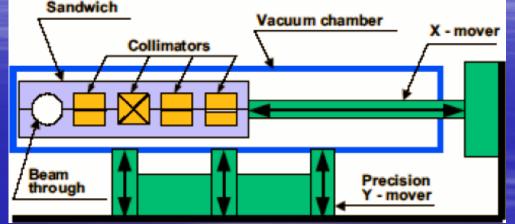
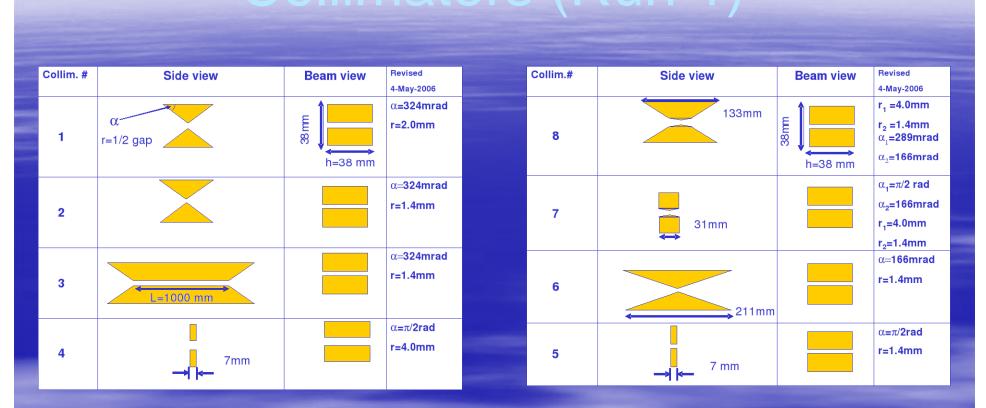
Collimator wakefield kicks

SLAC, RAL, CCLRC

Motivation of Measurement


- Collimators near ILC IR will cause wakefields
 Amplify incoming jitter.
 - Dilute emittance.
- Previous studies have shown the complexity of analytical calculations, even in simple cases.

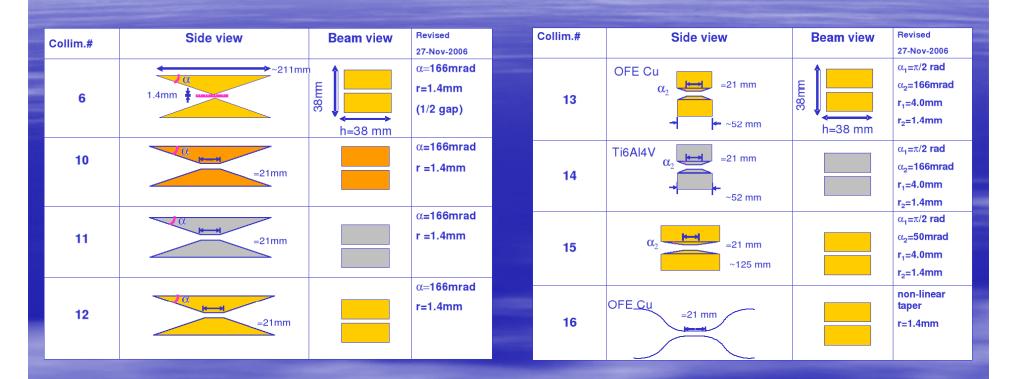
 Goal is to measure the transverse kick for a range of collimator specs, and compare with simulations.


- Try to improve agreement to -10%.

Experimental Setup

Beam Energy	28.5 GeV	
Charge	~1.5e10	
Bunch Length	0.3 – 1 mm	
<i>x</i> Size	~1 mm	7
<i>y</i> Size	~100 um	- 13

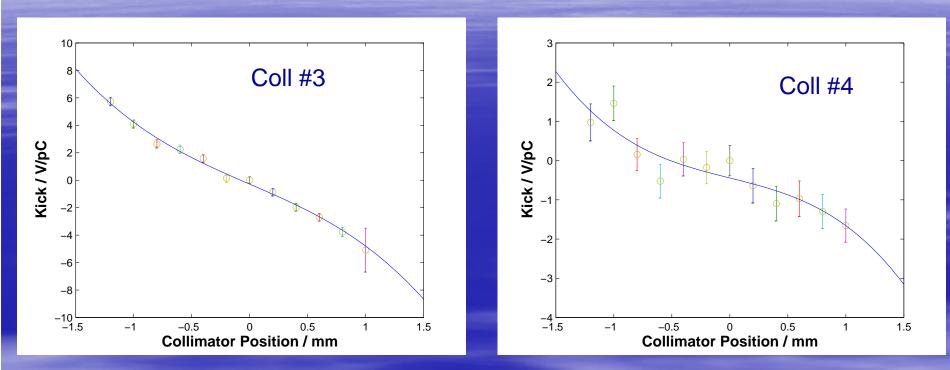
- Apparatus installed in ESA that allows remote selection of one of four collimators, or an empty slot.
 - Y-mover allows precision movement in 3D (y, z, dy/dz).
 - Micron-level read-back accuracy.
 - Hold beam still with position feedbacks, and move collimator.
- Four upstream, and six downstream BPMs
 - Reconstruct incoming and outgoing trajectory.
 - Deduce collimator induced kick.



Collimators (Run

Collimator #1 is identical to one from a previous test by P.T.

- Analytical prediction for #7 and #8 is identical, but 3D simulation hints at differences.
- #3 will have a much larger resistive component than the others.
- This set explores a wide range of taper angles.


Collimators (Run 2)

Collimator #6 identical to #6 from Run 1.

- This set investigates the effect of material and surface finish on the kick.
- #16 tested a smooth impedance change.

Data Analysis

- Record ~300 pulses at each collimator position.
 - Fit incoming and outgoing trajectories
 - Weighted by the resolution of the BPMs
- Calculate kick angle from these fits.
- Fit to 3rd order polynomial
 - Set coefficient of 2nd order term to zero.
 - Kick factor deduced from linear term.

Results and Conclusions

Predictions made for 0.5 mm bunch length.

3D modelling does <u>not</u> include resistive effects.

Coll.	Measured Kick	Measured Kick	Analytic Prediction	3-D Modeling
	Factor / V/pC/mm	Factor / V/pC/mm	Kick Factor	Prediction Kick
	(Linear Fit)	(Linear & Cubic Fit)	V/pC/mm	Factor V/pC/mm
1	$1.4 \pm 0.1 \ (1.0)$	$1.2\pm0.3~(1.0)$	2.27	1.63 ± 0.37
2	$1.4 \pm 0.1 \ (1.3)$	$1.2 \pm 0.3 \ (1.4)$	4.63	2.88 ± 0.84
3	$4.4 \pm 0.1 \; (1.5)$	$3.7\pm0.3\ (0.8)$	5.25	5.81 ± 0.94
4	$0.9 \pm 0.2 \ (0.8)$	$0.5 \pm 0.4 \; (0.8)$	0.56	0.8
5	$3.7 \pm 0.1 \ (7.9)$	$4.9 \pm 0.2 \ (2.6)$	4.59	6.8
6	$0.9 \pm 0.1 \; (0.9)$	$0.9\pm 0.3~(1.0)$	4.65	2.12 ± 1.14
7	$1.7\pm0.1~(0.7)$	$2.2\pm 0.3~(0.5)$	4.59	2.87 ± 0.53
8	$1.7\pm0.3~(2.0)$	$1.7\pm 0.3~(2.2)$	4.59	2.39 ± 0.89
13		$4.1 \pm 0.4 \; (0.8)$		3.57 ± 0.98
14		$2.6 \pm 0.4 \ (1.0)$		3.57 ± 0.98
15		$2.0 \pm 0.3 \ (1.8)$		2.51 ± 1.16
16		$1.3\pm0.3~(1.0)$		2.35 ± 1.50

Good agreement with PT's previous measurement of #1.
Analysis not yet complete on all collimators.

- Some anomalies,
 - Why do #1 and #2 have the same measured kick factor?
 - Why is the measurement for #14 lower than #13?