Crab Cavity Design for the ILC BDS (III)

- Baseline Design (FNAL)
- Damping Requirements (Cockcroft Institute)
- Damping Results (SLAC)

1

a) FNAL Baseline design b) SLAC New design

- MP Analysis
- Summary

Collaboration with FNAL and UK lab on this project.

1. Crab Cavity Base Line Design (FNAL)

Input Coupler: TM_{110-π} mode (3.9GHz) LOM Coupler: TM₀₁₀ mode (< 3.9GHz) SOM Coupler: Unwanted polarization of TM_{110-π} mode (~3.9GHz) HOM Coupler: higher order modes (>3.9GHz)

2

2. Damping Requirements (Cockcroft Institute)

- For high Qe (1 x 10⁷), expected beam loading \Rightarrow large power fluctuations:
 - Consequently large phase variations!
- Choosing a lower Qe $(5 \ge 10^5) \Rightarrow$ significantly reduce o/p phase variability.
- For 0.6 mm offset, up to 3.5 kW input power needed.
- FNAL input coupler only designed for <500 W CW.
- Developing a control model to determine the LLRF phase control capability.
- New input coupler needed for ILC crab cavity.

Cockcroft SAC Meeting

Peter McIntosh

2. Damping Requirements (Cockcroft Institute)

G Burt: Crab cavity Video meeting, 2/07/07

External Q factor

Assuming the modes are resonance with beam

4

2. Damping Requirements (Cockcroft Institute)

Analytical techniques were used to calculate the required damping for the worst case for each of the dipole modes individually

3. Damping Results (SLAC-Omega3P/S3P)

a) Baseline Design:

3. Damping Results (SLAC-Omega3P/S3P)

b) SLAC New Design

Reduce sensitivity

SOM with cell indentation of 1.9mm LOM in Crab-cavity

	Input Coupler	LOM -7π/9	HOM (f <fc)< th=""><th>SOM</th></fc)<>	SOM
Base Line Design	7x10 ⁶	1x10 ⁵	<1x10 ⁷	2.5x10 ⁶
New design	8x10 ⁵	6x10 ⁴	$<1x10^{7}$	7x10 ⁵
Requirement (CI)	<5x10 ⁵	<4x10 ⁴ (Pflow<10W)	$<1x10^{7}$	<5x10 ⁴ (worse case)

Need to estimate the realistic requirement on SOM damping! Need to study new input and SOM couplers.

9

MP in SC Cavity and HOM couplers.

11

a) Single Cell:

 $V_{\tau}max=5MV/m$

$$V_{T} = \frac{V_{z}(r)}{r\frac{\omega}{c}},$$

$$V_{z}(r) = r\frac{\omega}{c}V_{T}$$

$$V_{z}(5mm) = 2.04e + 6(V/m)$$

Computational Model

- Field level scan: Ez:0.1MV/m ~ 2.2 MV/m @r=5mm with dEz=0.1MV/m
- Launching location scan: space and phase (360°)
- 3. Launching energy: 2ev-5ev
- 4. Track out trajectory: field level, location, impact energy.
- 5. Postprocess to find out the MP with SEY curve

No MP found

b) New LOM Coupler:

At dr=5mm, Ez=0.1MV/m ~ 2.2MV/m with dEz=0.1MV/m No resonant trajectories found

Computational Model

12

14

Modified the pick up probe to reduce the occurrences of resonant trajectories (in progress)

Impact energy: 43eV/68eV

When Et=1MV/m~1.8MV/m

Summary

UK lab will build a copper model based on SLAC new design

Next to do:

- 1. Determine the damping requirements for the ILC crab cavity
- 2. Optimize the FM/LOM/HOM/SOM couplers to meet them
- 3. 3D coupler kicks
- 4. Compute the trapped modes between cavities
- 5. Wakefield study with cavity imperfections

