\square

- ODR-LDA-DIF-SLAB
- Multitude of Signals
- Multi-Purpose ECAL DIF Model for Lab \& Testbeam :
- Hardware = DIF + Adapter Card
- Firmware = DIF + Personality
- Physical Arrangement for Prototypes
- SLAB signals:
- ECAL with SPIROC / HARDROC +
- Simulation
- Special Lines:
- Differential \& Multi-Drop : Clocks,,, : Slab-end Termination
- Multi Source : Readout Data, TXOn,,,
- Bidirectional : RAM Full (also Multi Drop) - does "wired OR" - polarity?
- Minimal Set
- Ext Trigger ??
. Clock and Control?? - needs CDR (PLL ?)
. Slow Control :
. SPI, SPI-like, JTAG, I2C, I2C-like ??
- Broadcast?
- Synchronous?
. Chip Geographical Addresses : how: bonds, serial chain?
- Redundancy : how? What cost? Needed?

Control: ODR-LDA-DIF - VFE Readout: VFE-DIF-LDA-ODR

Maurice Goodrick \& Bart Hommels, University of Cambridge

Maurice Goodrick \& Bart Hommels , University of Cambridge

Maurice Goodrick \& Bart Hommels, University of Cambridge

A Multi Function ECAL DIF - Stacking

Maurice Goodrick \& Bart Hommels, University of Cambridge

Simulation-1 Row of "HARDROCs"

Maurice Goodrick \& Bart Hommels, University of Cambridge

SLAB Signals

Maurice Goodrick \& Bart Hommels, University of Cambridge

```
Simplified and idealised VFE
- Acquisition, Conversion and Readout phases
- (no slow control, trigger,...)
. 50MHz}\mathrm{ , not 40MHz}\mathrm{ , to match LDA baseline
```

- Note dual speed of Ck5_1 clock - TXOn signal not implemented yet

- Will progress to using the HARDROC VHDL
- Will add other signals
- Will add slow controls

Maurice Goodrick \& Bart Hommels, University of Cambridge

Simulation - Acquisition Phase

The first Ck5_1 clock edge with Bunch_Train TRUE causes VFEs to go into Acquire mode

The first Ck40 clock edge with Bunch_Train FALSE Causes VFEs to go into Convert mode

The DIF issues $4096+n$ clocks to ensure all VFEs do conversion The VFEs will in general finish conversion early, and can power-save

Simulation - Readout Phase

The first Ck5_1 clock edge with Token_In TRUE
causes VFEs to go into Readout mode

Maurice Goodrick \& Bart Hommels, University of Cambridge

Line Specs

Differential \& Multi-Drop Lines

Impedance will be low owing to board build capacitance - so will probably need higher current driver to maintain signal swing

Line Specs

Multi-Source Signals

"Open Collector" solution possible, but is slow / power hungry

Signals where we need to know that no VFE is driving are special:

- Example is the TX_On signal used to validate the VFE Data_Out signals
- Need the Pull-down R, and "Open Collector" drivers (or equivalent)
- "Pre-charge" pulse needed to speed operation
- If the RX has "Bus-Hold", the Pull-down can be omitted or be higher value

Maurice Goodrick \& Bart Hommels, University of Cambridge

Line Specs

Bi-Directional (RAM_Full)

> We can use a single line:
> * each chip knows whether it has sourced the signal

Needs to give "Wired OR" of the drive signals

> O/Ps Must be:
> P-Channel Open Drain [1,Z] (or Open Collector) or Tri-state $[0,1, \mathrm{Z}]$

The complementary solution may be better for the chip designers:

- Invert all signals
- Pull UP
- Drive with N-Channel [0,Z]

Minimising SLAB Signals

?? Why Minimise ??

- Inter - Panel connection is going to be DIFFICULT
- Probably limited to a few per cm of panel width (so ~ 100 total inc power)
- These connections are going to effect yield and reliability
- More signals = More Noise ??
- Redundancy schemes are likely to increase the number of signals by some factor (2, 1.5 ??)

?? Why Minimise ??

- Inter - Panel connection is going to be DIFFICULT
- Probably limited to a few per cm of panel width (so ~ 100 total inc power)
- These connections are going to effect yield and reliability
- More signals = More Noise ??
- Redundancy schemes are likely to increase the number of signals by some factor (2, 1.5 ??)

?? How ??

- In principle very few signals can be used to operate the VFEs
- Moving the functionality of the "Personality" into the VFE does this
. "Flexible Clock" line could be used for further reduction

?? Why Minimise ??

- Inter - Panel connection is going to be DIFFICULT
- Probably limited to a few per cm of panel width (so ~ 100 total inc power)
- These connections are going to effect yield and reliability
- More signals = More Noise ??
- Redundancy schemes are likely to increase the number of signals by some factor (2, 1.5 ??)

?? How ??

- In principle very few signals can be used to operate the VFEs
- Moving the functionality of the "Personality" into the VFE does this
. "Flexible Clock" line could be used for further reduction
?? What Cost ??
- Need to freeze operation into Silicon-loss of flexibility
- Potentially more vulnerable to VFE failure

?? Why Minimise ??

- Inter - Panel connection is going to be DIFFICULT
- Probably limited to a few per cm of panel width (so ~ 100 total inc power)
- These connections are going to effect yield and reliability
- More signals = More Noise ??
- Redundancy schemes are likely to increase the number of signals by some factor (2, 1.5 ??)

?? How ??

- In principle very few signals can be used to operate the VFEs
- Moving the functionality of the "Personality" into the VFE does this
- "Flexible Clock" line could be used for further reduction

?? What Cost ??

- Need to freeze operation into Silicon-loss of flexibility
- Potentially more vulnerable to VFE failure

?? Worth It ??

- Very large reduction in Signals
- Probably only way to have redundancy routing with acceptable connections

A Few Thoughts on Redundancy

1. Do we need it? ... can we live with, say, 1% dead Slabs?
2. Detector Wafers and Interconnections fail, not ASICs
3. If the SLAB connections are in rows (6?), is a dead row important?
4. Could redundancy be done at the level of the Panel ?
. Ext Trigger ?? \& other prompt signals
. Clock and Control?? - needs CDR (PLL ?)
. Slow Control :

- SPI, SPI-like, JTAG, I2C, I2C-like ??
- Broadcast?
- Synchronous?
- Chip Geographical Addresses : how: bonds, serial chain?
- Chip Temp Monitoring?
- Chip Serial Numbers ?
. Panel Serial Numbers?
. Current and Voltage Monitoring?
- Maximising Reliability :
- By design
- By QA and Environmental Testing

Heap of Slides from previous talks

A Multi Function DIF

Different Formats at Different Levels

Maurice Goodrick \& Bart Hommels, University of Cambridge

A Multi Function DIF

Environments

. Test Slab in the Lab - WP2.2 core work

- EUDET prototype in the lab
- EUDET prototype in Test Beam
- Next ASICs
- ILC environment

Control Requirements

- Clock
- Fast Controls
- Slow Controls
- VFE - specific
- Slab-specific
- Broadcast

Data Path Requirements

- Accumulated Rates
- Adding Source Addresses
. Calibration ???

A Multi Function DIF

VFE - DIF - LDA - ODR chain: Architecture / Function / Hierarchy

- model as per Manchester workshop of 14-May-2007
. existing set-up mirrors this to some degree
- needed for prototype and EUDET slabs
. needed for final ECAL, HCAL and DAQ
It is very worthwhile adopting this model at this at this stage:
- behavioural description is key:
- will check the viability of the scheme
- will allow fine tuning of the model
. will allow different flavours for different tasks (Test Panel, EUDET Prototype, ...

A Multi Function DIF

Maurice Goodrick \& Bart Hommels, University of Cambridge

A Multi Function DIF

Card Spacing：based on Marc Anduze＇s ECAL Module design

NOMINAL SPACINGS

（ADAPTER CARDS IGNORED）

LDA-DIF Cable and Connector

Maurice Goodrick \& Bart Hommels, University of Cambridge

