Guide

- .ODR-LDA-DIF-SLAB
- . Multitude of Signals
- Multi-Purpose ECAL DIF Model for Lab & Testbeam :
 - Hardware = DIF + Adapter Card
 - Firmware = DIF + Personality
- . Physical Arrangement for Prototypes
- SLAB signals :
 - ECAL with SPIROC / HARDROC +
 - . Simulation
 - Special Lines:
 - Differential & Multi-Drop : Clocks,,, : Slab-end Termination
 - Multi Source : Readout Data, TXOn,,,
 - Bidirectional : RAM Full (also Multi Drop) does "wired OR" polarity?
 - Minimal Set
- Ext Trigger ??
- . Clock and Control?? needs CDR (PLL ?)
- . Slow Control :
 - SPI, SPI-like, JTAG, I2C, I2C-like ??
 - Broadcast ?
 - Synchronous ?
- Chip Geographical Addresses : how: bonds, serial chain?
- . Redundancy : how? What cost? Needed?

Maurice Goodrick & Bart Hommels , University of Cambridge

A Multi Function ECAL DIF

A Multi Function ECAL DIF - Physical

A Multi Function ECAL DIF - Stacking

UNIVERSITY OF

CAMBRIDGE

Simulation - 1 Row of "HARDROCs"

DIF & Pers

Will progress to using the HARDROC VHDL
Will add other signals
Will add slow controls

Simulation - Acquisition Phase

The first Ck5_1 clock edge with Bunch_Train TRUE causes VFEs to go into Acquire mode

	11'			. <u>j</u>							 									
st/g Global R	eset																			
st/ckfast	0				Clk 50 M	٨Hz	תתתת	תתתח	โกกกก		תחחת	เกกกก		າມມາມ		າກການ		INNN		
st/b <mark>Bunch</mark> T	rain																			
st/i1/statep	idlep	idlep		<u>lacq</u>	0		DIF St	ate M/	С											,, (con∨p
DIF/Pers	1	Aco	q & RO (Clk								5 MHz	: - 10 E	3Xs sh	own					
Drive	0						Start A	cqis'n												
Signals	0																Con	vert (Clk	
st/i1/r0_dout	Z																			
st/r0_stro	In																			
End VFE Chip State	lle	idle			<u>acq</u>															∫con∨
	-																			
Mid VFE Chip State	lle	idle			<u>lacq</u>															<u>l</u> conv
Near VFE	-																			
Chip State	lle	idle			<u>lacq</u>															<u>¦con∨</u>
st/rU_endro	TU I																			

The first Ck40 clock edge with Bunch_Train FALSE Causes VFEs to go into Convert mode

Simulation - Convert Phase

The DIF issues 4096 + n clocks to ensure all VFEs do conversion The VFEs will in general finish conversion early, and can power-save

The first Ck5_1 clock edge with Token_In TRUE causes VFEs to go into Readout mode

Line Specs

Line Specs

Line Specs

- Inter Panel connection is going to be DIFFICULT
 - Probably limited to a few per cm of panel width (so ~ 100 total inc power)
 - . These connections are going to effect yield and reliability
- More signals = More Noise ??
- Redundancy schemes are likely to increase the number of signals by some factor (2, 1.5?)

- . Inter Panel connection is going to be DIFFICULT
 - Probably limited to a few per cm of panel width (so ~ 100 total inc power)
 - . These connections are going to effect yield and reliability
- More signals = More Noise ??
- Redundancy schemes are likely to increase the number of signals by some factor (2, 1.5?)

?? How ??

- In principle very few signals can be used to operate the VFEs
- Moving the functionality of the "Personality" into the VFE does this
- "Flexible Clock" line could be used for further reduction

- . Inter Panel connection is going to be DIFFICULT
 - Probably limited to a few per cm of panel width (so ~ 100 total inc power)
 - . These connections are going to effect yield and reliability
- More signals = More Noise ??
- Redundancy schemes are likely to increase the number of signals by some factor (2, 1.5?)

?? How ??

- . In principle very few signals can be used to operate the VFEs
- . Moving the functionality of the "Personality" into the VFE does this
- . "Flexible Clock" line could be used for further reduction

?? What Cost ??

- Need to freeze operation into Silicon loss of flexibility
- Potentially more vulnerable to VFE failure

- . Inter Panel connection is going to be DIFFICULT
 - Probably limited to a few per cm of panel width (so ~ 100 total inc power)
 - . These connections are going to effect yield and reliability
- More signals = More Noise ??
- Redundancy schemes are likely to increase the number of signals by some factor (2, 1.5?)

?? How ??

- . In principle very few signals can be used to operate the VFEs
- . Moving the functionality of the "Personality" into the VFE does this
- . "Flexible Clock" line could be used for further reduction

?? What Cost ??

- . Need to freeze operation into Silicon loss of flexibility
- Potentially more vulnerable to VFE failure

?? Worth It ??

- Very large reduction in Signals
- Probably only way to have redundancy routing with acceptable connections

- 1. Do we need it? ... can we live with, say, 1% dead Slabs?
- 2. Detector Wafers and Interconnections fail, not ASICs
- 3. If the SLAB connections are in rows (6?), is a dead row important?
- 4. Could redundancy be done at the level of the Panel?

Other Issues

- .Ext Trigger ?? & other prompt signals
- . Clock and Control?? needs CDR (PLL ?)
- Slow Control :
 - . SPI, SPI-like, JTAG, I2C, I2C-like ??
 - Broadcast?
 - Synchronous ?
- Chip Geographical Addresses : how: bonds, serial chain?
- . Chip Temp Monitoring?
- . Chip Serial Numbers?
- Panel Serial Numbers?
- . Current and Voltage Monitoring ?
- Maximising Reliability :
 - By design
 - . By QA and Environmental Testing

Spare Slides Follow

Heap of Slides from previous talks

Maurice Goodrick & Bart Hommels , University of Cambridge

Environments

- Test Slab in the Lab WP2.2 core work
- EUDET prototype in the lab
- EUDET prototype in Test Beam
- Next ASICs
- . ILC environment

Control Requirements

- . Clock
- Fast Controls
- . Slow Controls
 - VFE specific
 - Slab specific
 - Broadcast

Data Path Requirements

- Accumulated Rates
- . Adding Source Addresses
- Calibration ???

- VFE DIF LDA ODR chain: Architecture / Function / Hierarchy
 - model as per Manchester workshop of 14-May-2007
 - existing set-up mirrors this to some degree
 - needed for prototype and EUDET slabs
 - needed for final ECAL, HCAL and DAQ
- It is very worthwhile adopting this model at this at this stage:
 - behavioural description is key:
 - . will check the viability of the scheme
 - . will allow fine tuning of the model
 - will allow different flavours for different tasks (Test Panel, EUDET Prototype, ...

Card Spacing: based on Marc Anduze's ECAL Module design

NOMINAL SPACINGS (ADAPTER CARDS IGNORED)

Side View

Rear View

LDA-DIF Cable and Connector

