

The DHCAL DIF and the DIF Task Force

Julie Prast, LAPP, Annecy

08/10/2007

Julie Prast, LAPP, Annecy

1

The DHCAL board

- First detector with 2nd generation ASICs and 2nd generation DAQ.
- Front-end ASICs are embedded in detector
 - High level of integration, low PCB thickness
 - Ultra-low power with pulsed mode
- All communications via edge
 - Minimal access and room
- Large scale technological prototype optimized for the ILC concept.
 - Essential to demonstrate detector feasibility

Low Cost and industrialization are the major goals

The DHCAL board

- First detector with 2nd generation ASICs and 2nd generation DAQ
 - 8X32 pads RPC detector, 8 layer PCB optimized to reduce crosstalk and compatible with MicroMEGA detector
- Board received in june 07. First tests are encouraging.

HaRDROC

08/10/2007

HaRDROC chip for DHCAL

Hadronic Rpc Detector Read Out Chip (AMS SiGe 0.35µm, Sept 06) LAL IPNL

64 inputs, 1 serial output @ 5 MHz

•Multiplexed **analog charge output** (debugging)

•A 128 deep digital memory: store all channels and BCID for every hit : 20k data transferred during interbunch.

•ASICs embedded inside the detector for compactness and daisy chained to minimize output lines on the detector.

•Full power pulsing

•1700 chips to be produced in 2007 for 1m³ DHCAL prototype.

08/10/2007

HaRDROC digital part

• Chips are embedded and daisy chained to minimize number of output lines on the detector.

- FPGA based readout
- DAQ communication through USB

Next steps

- Perform cosmics test at Lyon and beam test at Desy this fall.
 - Using both RPC and MicroMega detectors
 - Setup: Almost done with the possibility to host few detectors
- Build a large area detector (>1m2) with an extensible scheme
 - Separate Slab and DIF for more flexibility
 - Stitchable PCBs to get long structure
 - Work in collaboration with the DIF task force

Setup for the Cosmics and beam tests

DIF Task Force

- Many similarities between the 3 subdetector ASICs (SPIROC, SKIROC, HARDROC) and between the 3 DIFs.
 - The 3 ASICs have been mostly developed by LAL and have a lot of common features, in particular the digital interface :
 - Daisy chain, power pulsing, ...
 - DIFs have also some identical functions:
 - Slow control, readout, interface with the DAQ, ...
- To avoid duplication (triplication) of work, a small working group of 4 people has been created, with one people from each subdetector and one from the DAQ :
 - Remi Cornat (Clermont) : ECAL
 - Mathias Reinecke (DESY) : AHCAL
 - Julie Prast (Annecy) : DHCAL
 - Bart Hommels (Cambridge) : DAQ
- We will work in collaboration with all the people working on the different subdetectors, on the DIF or on the DAQ.

Aim of the task force

- Define the interface between SLABs and DIF
 - Connector pinout
 - Electrical signals and levels
 - Underlying what is common and detector specific
- Define the DIF architecture : common blocks and detector specific blocks, interface to DAQ and USB.
- Define the slab to slab interface.
- Define common VHDL libraries.
- Try to standardize developments (Altera, Xilinx, ...)
- Summarize everything in a common document for the end of this year.

SLAB Long Structure

ECAL PCB

- Which technique to get the long structure (2 m) ?
- Gluing as for ECAL ?
- Other scenario ? See C. Combaret's Prague's talk
- Aim : manufacture standard sized PCBs : lower cost designs
- The SLAB/SLAB interface will be an essential parameter for the definition of the SLAB/DIF interface as it will impact the number of signals to consider.

- Max 4 etches / cm ?

Pictures from Peter Göttlicher, DESY

08/10/2007

Towards a generic SLAB/DIF interface

Category¤	Signal¤	Function¤	I/O∙for∙ slab¤	Valid∙ on¤	ECAL¶ (SKIROC)¤	DHCAL¶ (HARDROC)⊏	AHCAL¶ (SPIROC)¤
operation control≈	×	¤	×	×	×	×	*
×	reset*×	global reset of complete ASIC×	×	10M×	LVCMOS×	LVCMOS·×	LVCMOS·×
×	RST_counter×	Reset-for-the-BCID-counter×	×	high≈	LVCMOS×	LVCMOS·×	LVCMOS·×
×	Digital_pwr_on×	power-cycling-control-for-the- digital-part×	×	high≈	LVCMOS×	LVCMOS×	LVCMOS×
×	Analog_pwr_on*	power-cycling-control-for-the- analog-part×	×	high≈	LVCMOS×	LVCMOS×	LVCMOS×
**	DAC_pwr.on*	power-cycling-control-for-the- DAC-part×	×	high≈	LVCMOS×	LVCMOS×	LVCMOS×
×	ADC_pwr_on*	power-cycling-control-for-the- ADC-part×	×	high≈	LVCMOS×	**	LVCMOS×
×	×	×	×	×	×	×	**
×	StartAcqt×	start data acquisition×	×	high≍	LVCMOS×	LVCMOS×	LVCMOS×
×	start conv DAQ×	start-ADC-conversion×	×	high≈	×	×	LVCMOS×
×	no trig¤	erase-active-analogue-column×	×	high≈	**	**	LVDS×
×	Val Evt×	external validation of event×	×	high×	LVDS×	LVDS×	LVDS×
×	trig_ext×	external trigger¤	×	high×	LVCMOS×	LVCMOS×	LVDS×
×	<u>RAZ_Chn</u> ≍	reset for internal RS flip flops¶ (discriminator outputs)¤	×	high≍	LVDS×	LVDS×	×
slow∙control≈	×	¤	×	×	×	**	**
×	<u>clk_sc</u> ×	slow-control-shift-regclock- 1MHz×	×	rising¤	LVCMOS×	LVCMOS×	LVCMOS×
×	<u>srin_sc</u> (D_SC)≍	data-input-of-slow-control-shift- regchain¤	×	high≈	LVCMOS×	LVCMOS×	LVCMOS×
×	<u>srout_sc</u> ·(Q_SC)×	output of slow-control shift- regchain¤	0×	high≈	LVCMOS×	LVCMOS×	LVCMOS×
×	load_sc×	latch-command-for-slow control-data≍	×	high≈	×	**	LVCMOS×
×	srin_sc_byp≈	bypass-input-of-slow-control- reg.×	×	high≈	8	**	LVCMOS×
×	srout_sc_byp×	bypass-output-of-slow-control- reg.×	0×	high≈	*	**	LVCMOS×
readout¤	×	×	×	×	×	×	**
×	start readout×	token input of result data	×	high≍	LVCMOS×	LVCMOS×	LVCMOS×

From Mathias and the Task Force group

Towards a generic SLAB/DIF interface (2)

								_
		readout¤]¤
×	end_readout*	token output of result data readout¤	O×	high×	LVCMOS×	LVCMOS×	LVCMOS×	¤
×	CK_5M×	5MHz/1MHz·clock·readout×	×	rising≈	LVDS×	LVDS×	LVDS×	Π¤
×	CK_40M×	40MHz·clock·for·state· machine×	×	rising≈	LVDS×	LVDS×	LVDS×	Þ
×	TransmitOn×	data∘readout∘is∘active≍	O×	high×	open∙ <u>col</u> l×	open∙ <u>co</u> ∥×	open∙ <u>col</u> l≈	٦¤
×	Dout×	output of result data¤	O×	high≍	open·coll×	open·coll≈	open∙ <u>col</u> l≈	Πα
×	SCASat∞	analogue·pipeline·full¤	O×	high¤	×	×	open∙ <u>ço∥</u> ×	Π¤
×	RamEull×	digital RAM full×	O×	high×	open∙ <u>ço∥</u> ≈	open∙ <u>ço∥</u> ×	*	٦¤
8	RamEull_ext×	stops-current-acquisition-if-an- HC-RAM-is-full×	×	high≍	×	LVCMOS×	**	¤
×	bypass_in×	bypass-for-token-signal-for- readout¤	×	high≍	×	×	LVCMOS×	Þ
×	bypass_out×	bypass-for-token-signal-for- readout≭	O×	high≍	×	×	LVCMOS×	¤
debugging×	**	¤	×	×	×	×	×	Π¤
×	hold_ext (hold) ×	external channel trigger¤	×	high≍	×	LVCMOS×	LVDS×	٦¤
×	clk_probe (clk_R)×	debug·register·clock¤	×	rising¤	×	LVCMOS×	LVCMOS×	٦¤
×	srin_probe (D_R)×	readout probe reg. input≭	×	high×	×	LVCMOS×	LVCMOS×	Πα
×	srout_probe (Q_R)×	readout probe reg. output≍	O×	high×	×	LVCMOS×	LVCMOS×	٦¤
×	srin_read×	operates the analogue debug outputs¤	×	high≍	×	**	LVCMOS×	¤
×	srout_read×	read-register-chain-output×	O×	high≍	×	×	LVCMOS×	Πα
×	flag_tdc_ext×	debug: external charge or time SCA-select command¤	×	high≍	×	×	LVCMOS×	ľ
×	start_rampb_¶ adc_ext≈	debug∷external-start-signal-for- ADC-ramp≍	×	low×	×	**	LVCMOS×	¤
×	start_ramp_tdc_ext×	debug∷external switch 'Ramp1 to Ramp2' signal¤	×	high≍	×	×	LVCMOS×	¤
**	analog_output (Out_g)≈	SCA analogue test output×	O×	- XX	analogue×	analogue×	analogue×	¤
×	analog_probe_output*	analogue-test-output×	0×	- XX	**	×	analogue×]¤
×	digital_probe1×	digital probe output (debug)×	O×	high×	open∙ <u>coll</u> ≈	×	open <u>coll</u> ×	a

From Mathias and the Task Force group

Towards a generic SLAB/DIF interface (3)

×	Spare1 ×	×	*	×	*	*	*]¤
×	Spare2×	×	×	×	*	*	×]¤
×	Spare3×	×	×	×	*	*	*]¤
×	Spare4×	×	×	×	*	*	*]¤
Power×	X	×	×	×	*	×	×	Þ
·×	positive supply	+3.5V(digital + analog)×	×	- XX	power×	power×	power(?)×]¤
×	Analog power supply *	+3.5 V×	×	×	**	power×	**]¤
×	additional supply	+5V·(DAC)×	×	- 33	*	**	power (?) ×]¤
×	common ground ×	GND×	×	- 33	power×	power×	power(?)×]¤
×	detector bias×	HV×	×	- XX	power×	power×	power (4) ×]¤
Calibration and Monitoring ×		×	×	×	×	×	**	¤
×	Sensor_Power×	Power-for-temperature- monitors¤	×	- 33	×	×	power (1)×	Þ
8	Temp×	output of temperature mo⊓itors¤	0×	- 33	**	×	analogue (6?) ×	
×	Trigger Power×	power-for-trigger-logic×	×	- XX	*	×	power(2)×]¤
8	Charge_Power×	power-for-charge-injection- circuits¤	×	- 33	**	×	power(2)×	a
×	LED_Power*	power for light calibration system≭	×	- 33	×	×	power(2)×	Þ
×	VCALIB×	analogue level of calibration signal×	×	- 33	×	×	analogue(1)×	Þ
Ă	Trigger×	fast-trigger-of-calibration- system¤	×	rising¤	Ħ	д	LVDS×	Þ
×	L CTesta	charge injection¤	18	-8	analoque	analoques	×	18

From Mathias and the Task Force group

SLAB/DIF interface: Main questions

- Low power:
 - 4 Power cycling signals: DAC, Analog, ADC, digital.
 - Use token for digital PS to switch off the preceding ASIC in the readout chain.
 - No clock during interbunch.
- Reset signals: merge all ?
 - Slow control and BCID resets to be discussed.
- **Clocks**: generate the 40MHz clock from the 5MHz clock with a PLL ?
- External trigger has priority to the internal one during calib and test.
- Reliability of the daisy chain
 - Add signals to strap one asic in case one is broken ?

- Mechanical aspects :
 - Number of connections, Density of the connector, Low height connector, reliability

Conclusion

- DHCAL is the first detector with 2nd generation ASICs and 2nd generation DAQ.
- Next steps are beam test and 1 m² prototype.
- New developments in particular on the DIF architecture and SLAB to DIF interface are done conjointly with the DIF working group.
 - Already some progress on the Slab to DIF interface (see previous tables)
 - Slab to Slab interface is an important parameter.
 - Inputs are very welcome.