NA2 VALSIM Task 2007 report

J. Apostolakis, G. Folger, V.Grichine, A. Howard, V.Ivantchenko, M. Kossov, A. Ribon, V. Uzinskiy

October 8-10, 2007

Annual EUDET Meeting, Paris

Outline

- Introduction
- Model improvements
- Geant4 Releases
 - Quasi-elastic channel
 - Revised FTF model
- Validation
 - Cross sections (EUDET-Memo-2007-18)
 - Hadron elastic scattering
 - Comparisons with TARC experiment data
- Open Issues

Model improvements

- Identified diffraction and quasi-elastic channels as key channels (more longitudinal)
 - Influence shower shape significantly
 - Need for extended validation
 - String models (Geant4) deficient in modeling these
- Improvements undertaken
 - Geant4 FTF model revised
 - Separate Quasi-elastic channel used with our QGS model
 - Elastic scattering models: t-distribution data fits, diffuse model

Quasi-elastic and inelastic

- To model Quasi-elastic interactions
 - Calculated ratio of cross-sections
 - Quasi-elastic / Inelastic
 - Single-diffraction/Inelastic
 - Split inelastic cross-section of QGS
 - Deep inelastic for our QGS model
 - Quasi-elastic for new model

CHIPS QuasiFree/Inelastic Ratio for different $\sigma_{tot}(hN)$

Simplified Glauber model vs. CHIPS (V. Grichine)

p-A quasi-elastic/inelastic cross-section ratio

October 8-10, 2007

p+Be, p+Au interactions at 14.6 GeV/c T. Abbott et al. (E-802 Callab.), Phys. Rev. D45 (1992) 3906

Improvement of Geant4 FTF model

In Geant4-FTF model probabilities of intra-nuclear collisions were taken from QGSM. In the original FRITIOF model - from Glauber approximation

CHIPS fit of Elastic Scattering

New Elastic process (CHIPS fit)

proton

Diffuse charged (&Coulomb) hadron elastic scattering model (details in || NA2 session)

October 8-10, 2007

Annual EUDET Meeting, Paris

Physics lists and the Quasi-elastic channel

- The new quasi-elastic channel takes part of crosssection (using quasi-elastic/inelastic ratio)
 - from the Quark Gluon String (QGS, since G4 8.3)
 - from FTF (since 9.0) model
- It is activated in QGS physics lists:
 - QGSP, QGSC, QGSP_BERT, QGSP_BIC
 - QGSP_EMV, QGSP_BERT_EMV (faster EM)
 - QGSP_BERT_HP, QGSP_BIC_HP (precision neutron)
- Except in new QGSP_NQE, QGSP_BERT_NQE where this inelastic channel is inactive
 - Temporary lists (NQE = No Quasi-Elastic).
- Not relevant to LHEP physics list
 - It (HEP) does not use a string model.

Cross sections

- Review and validation of G4 cross-sections
 - Inelastic hadron-nuclear
 - Total hadron-nuclear
 - Note: In Geant4 the elastic and inelastic are separate
 - The total is taken from the sum elastic & inelastic, as used in different physics lists (means: el = tot - in)
- As a result, created two new cross section classes (EUDET-Memo-2007-18):
 - Optical model interpolation cross-sections for nucleons (tot,in: el=tot-in)
 - Simplified Glauber model for scaling E>100 GeV

Munich, Oct. 2006

October 8-10, 2007

Annual EUDET Meeting, Paris

n-C total cross-section

n-Fe total cross-section

n-W total cross-section

n-C inelastic cross-section

Details in recent EUDET-Memo-2007-18

n-Fe inelastic cross-section

The TARC Experiment Geant4 n-Benchmark

- Neutron Driven Nuclear Transmutation by Adiabatic Resonance Crossing (Cern 96-97)
- 2.5 or 3.5 GeV/c proton beam.
- 334 tons of Pb in cylindrical
 3.3m x 3.3m x 3m block.
- The lead is 99.99% pure.
- Beam enters through a 77.2mm diameter blind hole, 1.2m long.
- 12 sample holes are located inside the volume to measure capture cross-sections on some isotopes (energy-time curve).

TARC Fluence, Munich, Oct. 2006

- Spectral fluence is determined from the energytime correlation with crosschecks (lithium activation and He3 ionisation detectors)
- The simulated fluence is still below measurement
- The Bertini cascade gets closest to the data
- The spectral shape looks reasonable
- Yellow curve is ~ 4xBERTINI

Fluence Bertini cascade 2007

Fluence Binary cascade 2007

Longitudinal Shower Shape Profiles of Iron-Scintillator Calorimeter (simplified ATLAS TileCal)A. Ribon

The shower (10 λ) becomes a bit longer due to quasi-elastic processes

Quasi-elastic & Fritiof model

Considering a 100 GeV π^- beam on a **Iron**-Scintillator sampling calorimeters (a kind of simplified version of the ATLAS TileCal calorimeter), we can look how the visible energy is distributed in four longitudinal quarters:

	G4 8.2.p01		G4 9.0		
	QGSP	FTFP	QGSP	FTFP	_
f _{L1}	55.7%	56.5%	54.5%	52.2%	
f _{L2}	33.6%	33.6%	34.0%	34.6%	
f _{L3}	8.9%	8.2%	9.5%	10.6%	(smaller for Cu)
f _{L4}	1.8%	1.6%	2.0%	2.6%	

The longitudinal shower shapes are longer in G4 9.0 because of the quasi-elastic scattering. Furthermore, Fritiof model has been improved (thanks to V.Uzhinskiy).

Ongoing work

- Comparisons of proton-nucleus target diffraction (pA->pX) underway. A lot to do!
 - > Data from HELIOS experiment, 450 GeV/c
- TARC
 - Radial fluence distribution
 - True calorimetry
 - Neutron capture
 - > Write-up
- Review of pre-compound and de-excitation
 - > Mini-workshop at CERN, July 17-21, 2007
 - Improvements of models underway
- New Diffuse Elastic for differential σ (msc, NIEL)

Summary

- Improvements released in Geant4 8.3 (4 May 2007):
 - First revision of FTF model
 - > Quasi-elastic channel coupled with QGS model
- Improvements in Geant4 9.0 (30 June 2007)
 - > Further revision of FTF model (for pions)
 - Quasi elastic added to FTF physics lists
 - QElastic used for all nucleon projectiles (all targets)
- Already released
 - Elastic scattering process (QElastic: 8.1 p/n on H, 8.2 p/n on all)
- Cross-section review (EUDET-Memo-2007-18)
- Validation of neutron transport in TARC

Backup slides

October 8-10, 2007

Annual EUDET Meeting, Paris

Deliverable

- VALSIM month 18 milestone (June 2007)
 - "First release of improved version of the hadronic processes and physics lists in GEANT4"
- Improvements identified and undertaken:
 - Issues identifies as a result of validation
 - Revised FTF model, improving diffraction
 - New modeling of quasi-elastic channel

Geant4 Releases

- The upcoming minor release Geant4 8.3 includes
 - the revised FTF model (in place of the original)
 - Option to split the inelastic cross-section between the QGS model and a quasi-elastic interaction
 - Activated in QGSx family of Physics lists (see next page)
 - Fix to Copper cross-section
 - which was reduced in 7.0 (tbv) by 4% compared to data
- It is planned for public release on 9th May 2007
- Geant4 9.0 is the scheduled release of June.

Releases and Elastic improvement

- Improved Elastic scattering
 - Most important for Hydrogen
 - Most relevant for light targets, but all improved
- The new 'QElastic' (M. Kossov)
 - As a process available for all elements in 8.2
 - Used in QGSC and QGSP_QEL
- Intermediate solution (since Geant4 8.1)
 - HadronElastic (V. Ivantchenko) used QElastic for Hydrogen
 - Used in QGSx , FTFx physics lists in 8.1-8.3

Comparison with exp. data

^{Octob} There is a problem with description of rapidity distributions

CHIPS improvement of pPb elastic scattering

CHIPS method for quasi-elastic scattering

- Calculate and approximate R=QE/Inelastic \Box Probability of interaction: $\sigma_{in} = \int 1 - e^{-\sigma \cdot T(b)} d^2 b$, $\sigma = \sigma^{tot}(hN)$ □ Probability to interact once: $\sigma_{OF} = \int \sigma \cdot T(b) \cdot e^{-\sigma \cdot T(b)} d^2 b$ Precize approximation of $\sigma^{el}(hN)$ & $\sigma^{tot}(hN)$ nn/pp and np/pn interactions 8 □ N-N and Hyperon-N interactions isotopic $\Box \pi^{-} p / \pi^{+} n$ and $\pi^{+} p / \pi^{-} n$ interactions groups □ K⁻N/K⁰N and K⁺N/K⁰N interactions
- Calculation of QElastic/In & QFree/In ratios

CHIPS QuasiFree/Inelastic Ratio for different $\sigma_{tot}(hN)$

CHIPS improvement of hadron-nucleon total cross-section

p-Si inelastic cross-section

π -Fe inelastic cross-section Cross-Section (mb) 000 200 000 200 Geisha inelastic Barashenkov σ_{in} G-G inelastic ihep-exp db data 900 800 700 600 **,10**⁻¹ Annual EUDET M_{π} etenergy (GeV) **10⁻²** October 8-10, 2007 10

Neutron Energy-Time Correlation

- A first test of neutron transportation in Geant4 is to look at energy-time correlation
- This relies heavily on the high precision neutron_hp model for neutrons < 20 MeV
- Neutron energy and time are stored for the flux through a given radial shell
- Reasonable agreement with expectation, although the low energy population is quite different between physics list (as expected)

Annual EUDET Meeting, Paris

Fluence Bertini cascade 2007

- Yellow: sphere
- Red: cylinder
- Black: Full 4π/cosθ

5000 Events

BERTINI 225 GeV/c

10⁶ 10⁵ 10⁴ 10² **10**⁴ 10³ 10⁵ 10⁶ 10 10 10 10

Fluence Binary cascade

- Yellow: sphere
- Red: cylinder 107
- Black: Full $4\pi/\cos\theta$

40

Fluence Bertini cascade

Ratio of fluence G4/Data – Bertini

- Ratio of
 4π/cosθ: Data
- Two-sets of data
- Approximately 50-60% overestimated
- Dominated by systematic errors of experiment

Ratio of fluence G4/Data – Binary

- Ratio of 4π/cosθ: Data
- Two-sets of data
- Approximately agrees (~10% under-estimated)
- Dominated by systematic errors of experiment

Neutron Energy /eV

Other cross sections

• In addition created and validated

Cross sections for elastic scattering of p, n

Released H, D, He in G4 8.1 (June 2006) and other. Kossov elements in G4 8.2 (December 2006)

Final state t-distribution also fitted to data.