
Electronics, common issues NA2, JRA1, JRA2, JRA3

- Monday 8/10 16.30 hrs-18.00 hrs
- ~40 attendees
- NA2: News on the MICELEC microelectronics service; Michael Campbell for Alessandro Marchioro
- JRA1: The EUDET data reduction board and its application to the JRA1 pixel telescope; Concezio Bozzi
- **JRA3: JRA3 developments;** Christoph de la Taille
- JRA2: Requirements/ideas for a future gas detector readout device; Michael Campbell

NA2 contribution

EUDET-MICELEC Status Report October 2007

A. Marchioro / CERN-PH

Technology access

- Foundry contract for 130 and 90 nm CMOS and BiCMOS is available for all HEP community
- Present total demand from community is below threshold to organize internal MPWs
 - But mini-MPWs (10-25 mm²) in 130 nm are organized through MOSIS for same foundry
- Proposal for common 130 nm MPW run:
 February 2008
 - □ If interested, contact us asap!

Support services

- Packaging contract discussed with Europractice for ASE/Taiwan
 - Many standard and advanced products DIL, Quad, BGA, Flip-Chip etc.
 - □ If interested, contact us!
- CERN has acquired a new advanced IC tester (Credence Sapphire)
 - Users interested in accessing this service for professional IC characterization are welcome to contact us!

Tools and Training

- Customized design kit developed (partly) with EUDET funds to facilitate design of complex digital ICs
- Four training courses with 10 participants each (last in June 2007) organized to spread knowledge about utilization of advanced design tools. 5th Design course being prepared for late '07

Final remarks:

Community is warmly recommended not to spread (the thin resources) over different technologies! Users are welcome to submit suggestions and comments on their wishes and needs **Contribution from JRA1**

EUDRB: the data reduction board of the EUDET pixel telescope

Lorenzo Chiarelli, Angelo Cotta Ramusino, Livio Piemontese, Davide Spazian Università & INFN Ferrara

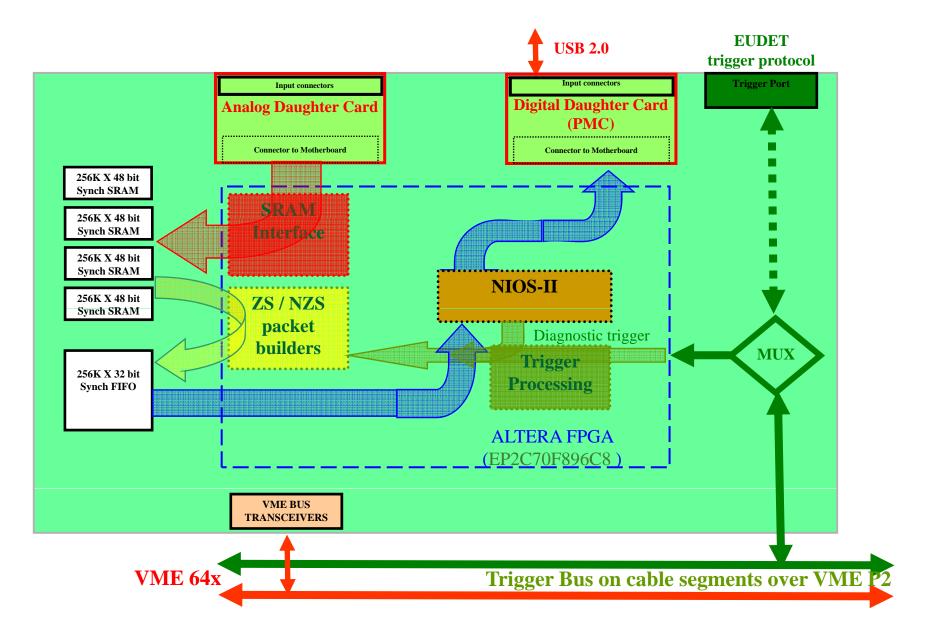
Presented by Concezio Bozzi

A VME64x/USB2.0-based DAQ card for MAPS sensors

Mother board built around an ALTERA Cyclonell FPGA (clock rate: 80MHz)

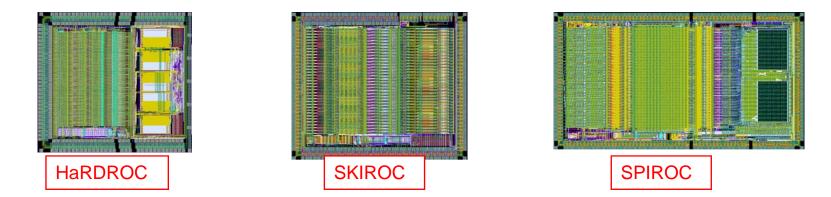
NIOS II, 32 bit "soft" microcontroller (clock rate: 40MHz) implemented in the FPGA for

- on board diagnostics
- on-line calculation of pixel pedestal and noise
- remote configuration of the FPGA via RS-232, VME,


Zero Suppressed readout Non Zero Suppressed readout

analog daughter card based on the successful LEPSI and **SUCIMA** designs

digital daughter card drives/receives control signals for the detectors and features a USB 2.0 link

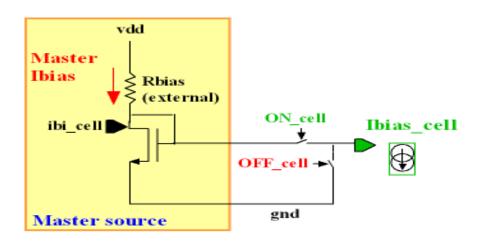

Data Flow for benchtop DAQ via USB2.0, and for data taking via VMEBUS

Conclusions

- EUDRB successfully used in beam tests at DESY (June, August) and CERN (September)
- Connected to MAPS sensor for demonstrator: MimoTEL, 256x256, 30µm x 30µm pitch
- Hunting for better performance:
 - VME CPU is the real bottleneck at the moment
 - Some improvements on the EUDRB side also possible

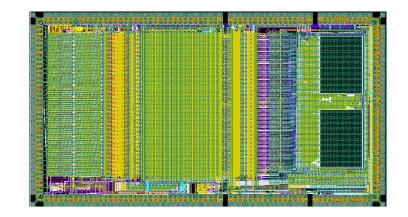
Once optimised, the EUDRB could be used in other Pixel read-out applications

EUDET JRA3 Front-End electronics in 2007

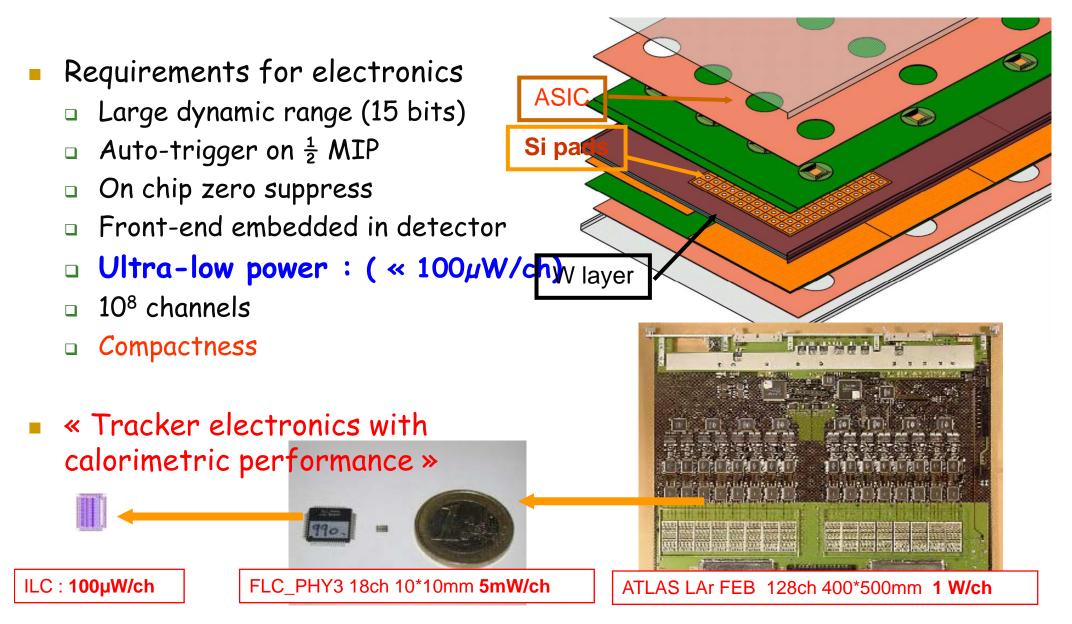


- Maximum power available:
 - 10 μ W/ channel with 0.5% duty cycle
 - => 640μ W/3.5V=**180** μ A for the entire chip
 - OFF= Ibias _cell switched off during interbunch:

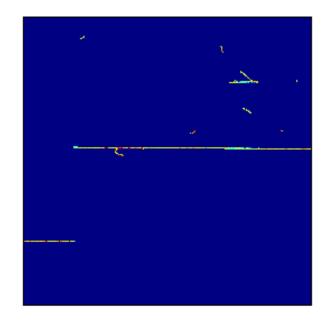
	ON	OFF
Vdd_pad	0	
Vdd_pa	5.8 mA	5.6 <i>µ</i> A
Vdd_fsb	4.9 mA	65 µA
Vdd_d0	2.8 mA	78 µA
Vdd_d1	2.7 mA	0
Vddd+	3.3mA	200µA
vddd2		+ 0 (Clk OFF)
Vdd_dac	0.77 mA	218 µA
Vdd_bandga	5.05 mA	2.73 mA
р		
Total (noPP)	25.3 mA	3.2mA
Total with 0.5% PP	125 <i>µ</i> A	0 hopefully


Common issues

- Power pulsing studies
 - Power management and distribution
 - Stability,
 - Clock distribution
- DAQ
 - Zero suppressed data
 - Minimum number of lines
- ASIC technologies
 - « Analog friendly » technologies : now mostly 0.35µm AMS SiGe
 - □ Sharing blocks, MPWs : in2p3, Krakow....


Conclusion

- 3 major second generation ASICs for technological prototypes submitted
 - HARdROC submitted for DHCAL RPCs
 - SKIROC submitted for ECAL Si-W
 - SPIROC for AHCAL SiPM
- System aspects now proceeding
 - Power pulsing, Zero-suppress, Auto-trigger, 2nd generation DAQ...
 - On detector boards
 - Connection to DAQ : task force
 - EUDET repository for shared VHDL code

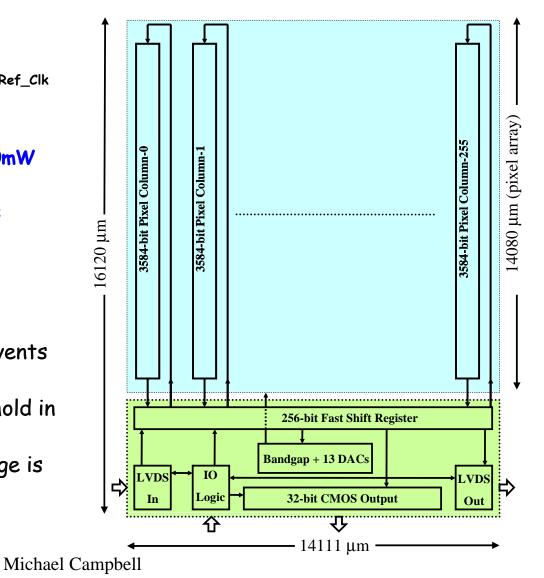


ILC Challenges for electronics

Contribution from JRA2

Pixel Readout Electronics from HEP to imaging to HEP... Status, requirements, new ideas

M. Campbell, R. Ballabriga, E. Heijne, X. Llopart, L. Tlustos, W. Wong CERN Geneva, Switzerland


Timepix developed within JRA2

- Chip architecture almost identical to Mpix2MXR20
 - M0=M1=1 and Shutter ON -> FClock used as Ref_Clk
- 256×256 55µm square pixels
- Analog Power -> 440mW
- Digital Power (Ref_Clk=50MHz) -> 220mW
- Serial readout (@100MHz) -> 9.17 ms
- Parallel readout (@100MHz) -> 287 μs
- > 36M Transistors

Very successful development => JRA2 results

Room for further development

- Charge below threshold in shared events is lost in all modes
- Charge measurement near to threshold in TOT is imprecise
- Arrival time/TOT measurement range is limited by counter depth
- Chip is neither triggerable nor data driven
- There is no FAST-OR

Requirements for a general purpose gas and semiconductor readout chip

- Clean hit information
- Low and uniform threshold
- High spatial resolution
- Combined energy and arrival time information
- Include a FAST-OR

GasSiPix - Front end

*** Basic idea developed together with Ruud Kluit of NIKHEF ***

Medipix3 or GOSSIPO-2 like

- Suitable for semiconductors and gas readout?
- Rise time 25ns?
- Noise 100 e⁻ rms?
- Minimum threshold 750e-?
- Power <1W/cm²?
- For gas detectors include spark protection and SiProt shielding
 - Which A:Si thickness?
 - How many pC should it withstand?
- Use precision time tag unit from Nikhef (GOSSIPO-2 V. Gromov) in pixel to measure arrival time
 - 1-2ns precision for Vernier counter?
 - 15-bit clock tick counter?
- Use TOT for energy measurement and/or timewalk correction if charge summing not include
 - B-bit TOT precision?

Gave rise to a lively discussion, with clear interest in the subject

Summary of Common electronics session

- There is a broad spectrum of electronics activities in EUDET
- ~20 talks on electronics during the parallel sessions on Monday
- Some of these were discussed at the Common electronics session, with a view of common use/developments and cross fertilisation
- Clear areas for use across the NA/JRA's were indicated as well as prime areas for development and future application of EUDET work