

Generic Silicon Detector R&D

Thomas Bergauer

Institute for High Energy Physics (HEPHY) Austrian Academy of Sciences, Vienna

for the SiLC Collaboration

EUDET Annual Meeting 8. October 2007

1

SilC Silicon Sensor Baseline

• SilC sensor baseline

- FZ p-on-n sensors: n-bulk material, p+ implants for strips
- high resistivity (5-10 kOhm cm)
- Readout strip pitch of 50µm
 - Possibly intermediate strips in between (resulting 25µm pitch)
 - Smaller pitch becomes very complicated (Pitch adapter, bonding, charge sharing,...)
- Thickness around 100-300µm
 - mostly limited by readout chip capabilities (S/N ratio)
- Low current: <1nA per strip</p>

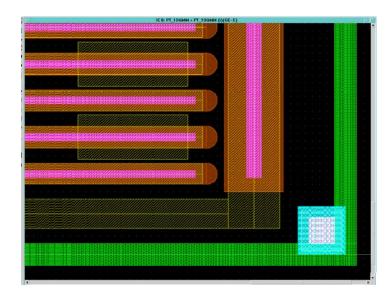
(Due to long integration time: noise mostly defined by current and resistors)

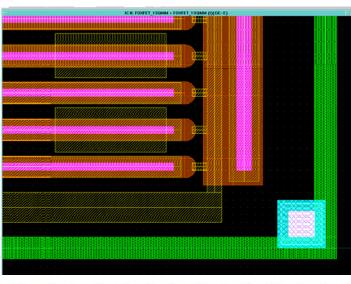
• Baseline for inner layers:

- 6" inch, Double sided, AC coupled

Baseline for outer layers:

- 8" (12"?) inch, Single sided, Preferably DC coupled (cheaper)

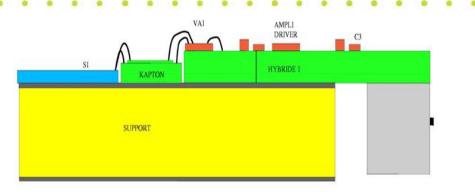

Sensor Baseline Details

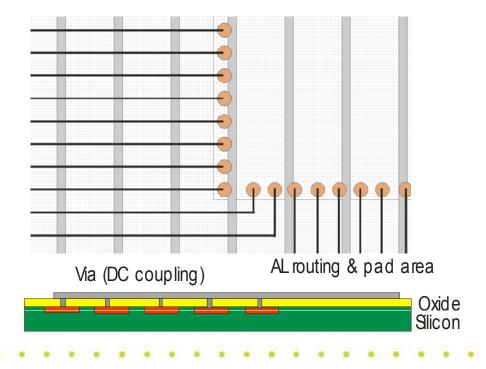

Biasing Possibilities:

- bias resistor with poly-silicon (20 to 50 MOhm; not shown)
- punch-through (upper picture)
- **FOXFET** biasing structure (lower picture)

Advantages/disadvantages:

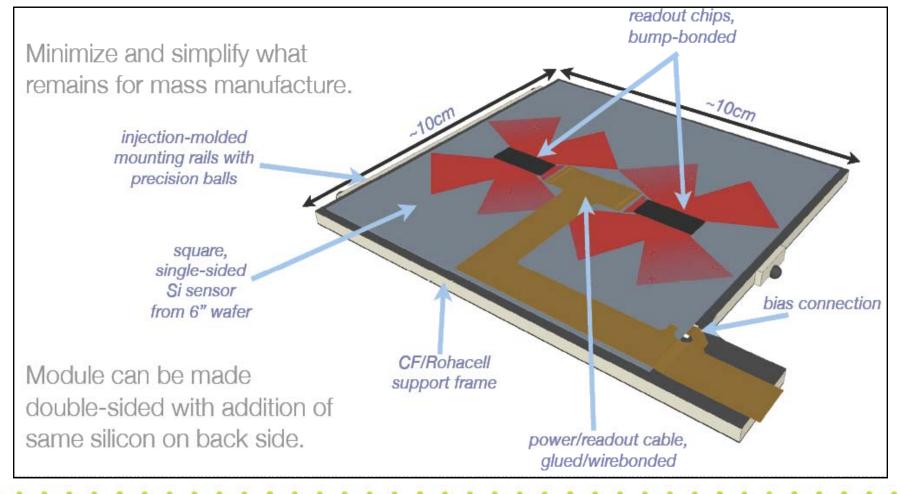
- Poly-Si radiation hard; PT and FOXFET not
- PT and FOXFET cheaper

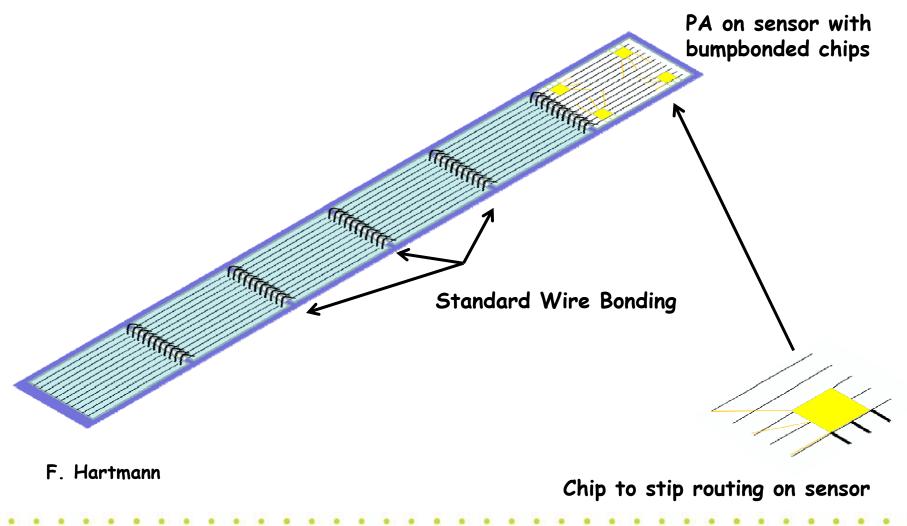




Minimize material budget

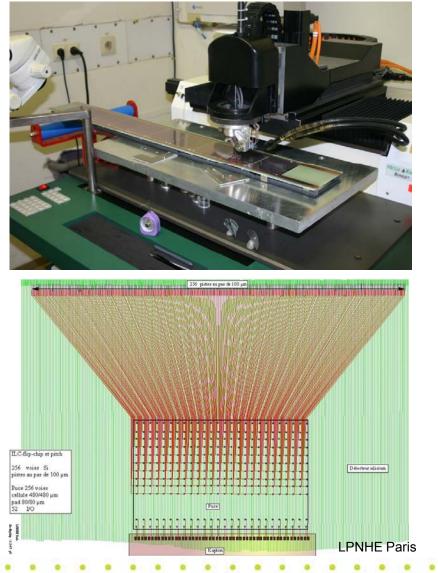
- Multiple scattering is crucial point for high-precision LC experiment
- Minimize multiple scattering by reduction of material budget
 - avoid old-fashioned way (pitch adapter, FE hybrid, readout chip)
- Integrate pitch adapter into sensor
 - Connectivity of strips to readout chip made by an additional oxide layer plus metal layer for signal routing
 - Readout chip bump-bonded to sensor like for pixels




Similar to SiD Concept:

Slide taken from Timothy Nelson's Presentation of SiD detector concept at Bejing ILC GDE Meeting (Feb 6, 2007)very elegant!

Long ladder with 2 sensor types



"Inline pitch adapter" for SiLC UMC Chip

- SiLC 130nm chip successfully tested with long ladder out of 10 HPK GLAST sensors
 - Wire bonding
- Next SiLC chip version
 - 128 channels
 - Bump-bonding

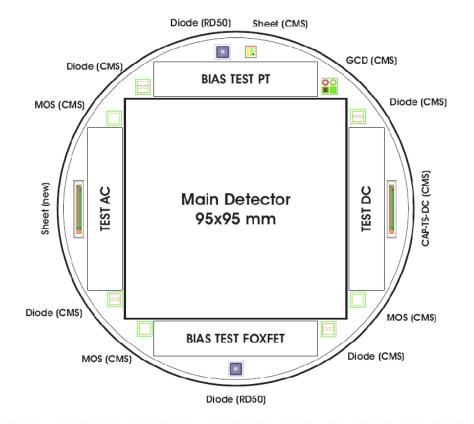
IEKP Karsruhe

SilC work program for sensor R&D

- Step 1 (2007-2008)
 - Use long strips (50 µm pitch)
 - Wafer thinning (100, 200, 300µm)
 - Test new readout chips (DC coupling, power cycling)
 - Improve standardized test structures and test setups
- Step 2a (2009-)
 - Move from pitch adapter to in-sensor-routing
 - Test crosstalk, capacitive load of those sensors
- Step 2b (2009-)
 - Test 6" double sided sensors
- Step 2c (2009-)
 - 8" (12") single sided DC wafer

Step 1 and 2a:

- Bump-bondable 128-channel chip available 2008
- HPK agreed to provide a sensor design
- SiLC adapts strip to pad area
- HPK will process the sensor
- SiLC (LPNHE Paris) provides chip
- HPK bump bonds chip to sensor
 - HPK is very interested to strengthen inhouse bumpbonding
 - In Bump
 - Flipchip
 - Stud-bonding
- Testing begins 2008



Status of the sensor producers

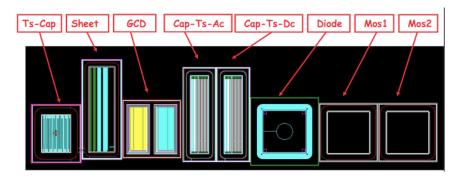
HPK Sensor Order

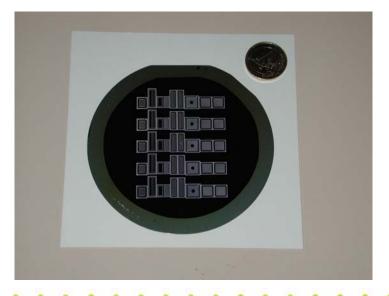
- Single-sided AC coupled SSD
- Sensor size: 91,5 x 91,5 mm² (± 0,04 mm)
- Wafer thickness: approx. 320 µm
- **Resistivity**: such that depletion voltage: 50 V < Vdepl < 100 Volt
- Leakage current: < 10 µA per sensor
- Biasing scheme: poly-Silicon Resistor with 20 MΩ (± 5 MΩ)
- Number of strips: 1792 (= 14 x 128)
- **Strip pitch:** 50 um pitch, without intermediate strips
- Strip width: 12.5 um
- Dielectric Structure: Oxide (SiO₂) + Nitride (Si₃N₄) between p+ and aluminium strips.
- 2 **bond pads** on each side of the strip
- 1 probe pad on each side of the strip (contact to p+)

- We ordered 35 HPK Sensors
 - 30 "normal sensors"
 - 5 "alignment sensors"
- Have been delivered last week

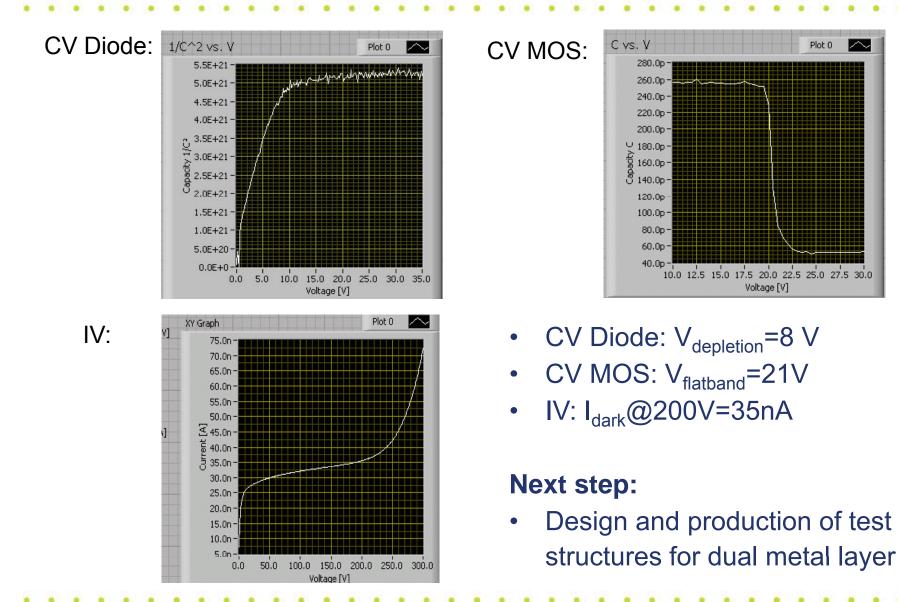
HPK Sensor Order

- Main detector will be used to
 - Build prototype modules to test new readout chip (Testbeam takes place this week at SPS@CERN)
 - Build modules for LC-TPC project
 - Build long ladder
- Test structures
 - TESTAC and TESTDC
 - 256 strips with pitch=50um
 - Multi-geometry test structures with different strip widths and different intermediate strips
 - Will be used to test coupling, C_int, resolution (eventually in a testbeam)
 - BIASTEST FOXFET and punch-through
 - 128 channels with pitch=50um
 - with different biasing schemes

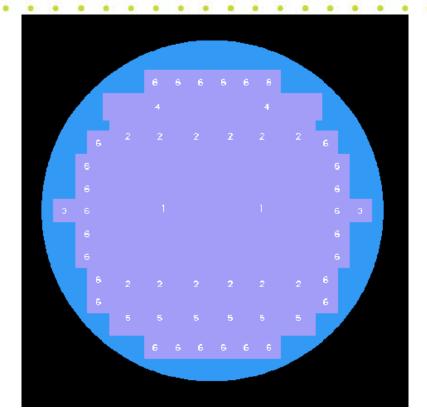

TESTAC:


strip width	intermediate
[µm]	strips
5	no
10	no
12.5	no
15	no
20	no
25	no
5	single
7.5	single
10	single
12.5	single
15	single
17.5	single
5	double
7.5	double
10	double
12.5	double

IET Warsaw


- Contact established with *Institute* for Electron Technology already three years ago
- They have experience with SOI and chip production, but not with fully depleted devices yet.
- Goal: develop test structures based on CMS 'half-moon', but improved
- Three 4" wafers received from first processing batch
- Results look promising

IET Warsaw Results

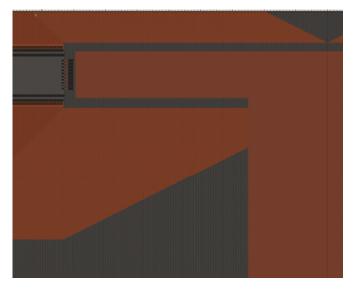


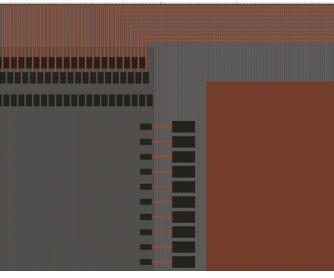
VTT (Finland)

- VTT is a large Finnish national research center
- Start of collaboration in December 2007 with goal to develop detectors

Status:

- Design ready
- Two main sensors on 4" wafer
 - One sensor DC coupled
 - Other AC coupled with FOXFET biasing
 - Vienna provided CMS-like test structures
- Processing ongoing
- We are waiting for the first wafers by end of the year




- 1. MAIN DETECTOR, 5 X 5 SQCM
- 2. MEDIPIX2, 1.5 X 1.5 SQCM
- 3. ALIGNMENT MARKS, 1 X 1 SQCM
- 4. HALF MOON TEST STRUCTURE
- 5. EDGELESS TEST STRUCTURES, 1.5 X 1.5 SQCM
- 6. BABY DETECTORS, 1 X 1 SQCM

ON Semiconductor

- Company located in Czech republic, former name "Tesla"
- High wafer throughput
 - 4" and 6" production line running
- Experience already with Delphi and Atlas Pixel detectors
- First contact established
- Agreement to design and build dual-metal-layer test structures detectors with them

Summary/Outlook

- Sensor baseline established:
 - FZ, p-on-n, high resistivity, 100-300um thick, 50um pitch
 - preferably DC coupled, otherwise biasing via PolySi, PT or FOXFET
- SiLC/SITRA Goals:
 - Establish companies to deliver silicon detectors for future HEP experiments
 - First contact with sensor producers (e.g. HPK, VTT, ONSemi,..) established
- Outlook / Future plan
 - Develop design, build and test detectors with fine pitch for ILC
 - Dual metal layer structure for in-sensor routing
 - Develop cheap, industrial bump-bonding technology
 - Detector thinning
 - 6" Double sided sensors
 - 8" (12"?) single sided DC sensors

The end.