Electronics Developments for SITRA

Silicon strips readout using Deep Sub-Micron Technologies

Jean-François Genat

on behalf of

A. Comerma-Montells³, W. Da Silva¹, J. David ¹, M. Dhellot¹, D. Fougeron², D. Gascon ³, R. Hermel², J-F. Huppert¹, F. Kapusta¹, H. Lebbolo¹, T.H. Pham¹, F. Rossel¹, A. Savoy-Navarro¹, R. Sefri¹, S. Vilalte²

¹LPNHE Paris, ²LAPP Annecy, ³UEB Barcelona

Work in the framework of the SiLC (Silicon for the Linear Collider), R&D Collaboration and the EUDET I3-FP6 European Project

1

EUDET Annual meeting October 8-10th 2007 Ecole Polytechnique Palaiseau, France

Outline

•	Detector data	2
•	Technologies	5
•	Front-End Electronics	7
•	4-channel 130nm chip	11
•	128-channel chip	30
•	Conclusion	39

Silicon strips detector

Assume:

- A few 10⁶ Silicon strips
- 10 60 cm long,
- Thickness 200–500 μm
- Strip pitch 50–200 μm
- Single sided, AC or DC coupled
- Strixels ?, 3D ?

Millions of channels: Integration of k-scale channels readout chips

Silicon strips data at the ILC

Pulse height: Cluster centroid to get a few µm position resolution Detector pulse analog sampling

Time: 150-300 ns for BC identification, 80ns sampling Shaping time of the order of the microsecond

Outline

•	Detector data	2
•	Technologies	5
•	Front-End Electronics	7
•	130nm chip	11
•	128 channels chip	30
•	Conclusion	39

Technologies

Silicon detector and VLSI technologies allow to improve detector and front-end electronics integration

Front-end chips:

- Thin CMOS processes 130, 90 nm available from Europractice (IMEC, Leuven)
- Chip thinning down to $50 \,\mu m$

More channels on a chip, more functionalities, less power

Connectivity:

- On detector bump (stud)-bonding (flip-chip) 50-100 μm pads
- 3D interconnections even less...

Smaller pitch detectors, better position and time resolution. Less material

Outline

•	Detector data	2
•	Technologies	5
•	Front-End Electronics	7
•	130nm chips	11
•	128-channel chip	30
•	Conclusion	39

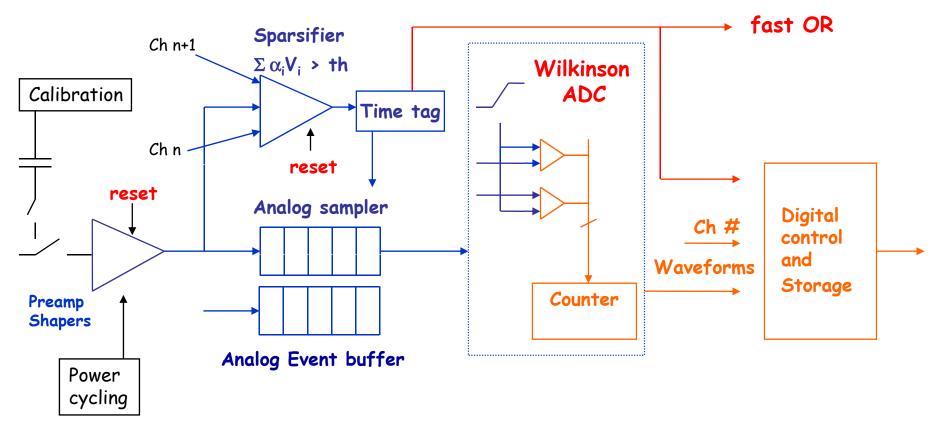
Integrated functionalities

Full readout chain integration in a single chip

- Preamp-shaper
- Trigger decision on analog sums :
- Sampling:
- Analog event buffering:
- On-chip digitization

- Sparse data scan Analog pipe-line occupancy: 8-16 deep event buffer 10-bit ADC
- Buffering and pre-processing:
 Centroids, Least square fits, Lossless compression and error codes
- Calibration and calibration management
- Power switching (ILC duty cycle)
- Presently 128 channels in 130nm CMOS under design at LPNHE/LAPP/UEB having in view 512-1024 channels

Front-End Chip goals


Integrate 512-1024 channels in 90nm CMOS:

	Amplifiers:	- 30 mV/MIP over 30 MIP range
	Shapers:	- Two ranges: 500ns-1μs, 1μs-3μs
	Sparsifier:	- Threshold the sum of 3-5 adjacent channels
	Samplers:	 8 samples at 80ns sampling clock period Event buffer 8-16 deep
\triangleright	Noise baseline:	·
		Measured with 180nm CMOS: 375 + 10.5 e-/pF @ 3 µs shaping, 210µW power S/N = 20 @ 90cm long strips

- > ADC: 10 bits
- Buffering, digital pre-processing
- > Calibration
- Power switching can save a factor up to 200

ILC timing: 1 ms: ~ 3-6000 trains @150-300ns / BC 199ms in between

Foreseen Front-end architecture

Charge 1-30 MIP, Time resolution: BC tagging 150-300ns 80ns analog pulse sampling

Technology: Deep Sub-Micron CMOS 130-90nm

Outline

•	Detector data	2
•	Technologies	5
•	Front-End Electronics	7
•	130nm chips	11
•	128 channels chip	30
•	Conclusion	39

History

۹	2004-2006	180nm chip:	OK with radio-active source
٩	2006-2007	130nm 4-channel:	Beam tests this week at CERN
٩	2007	130nm 1-channel:	Improved analog pipe-line, calibration
•	2007-2008	130nm 128 channels:	True mixed design All analog blocks validated Digital under design.
٩	2009	k-channels chip	

Front-end in 130nm

130nm CMOS:

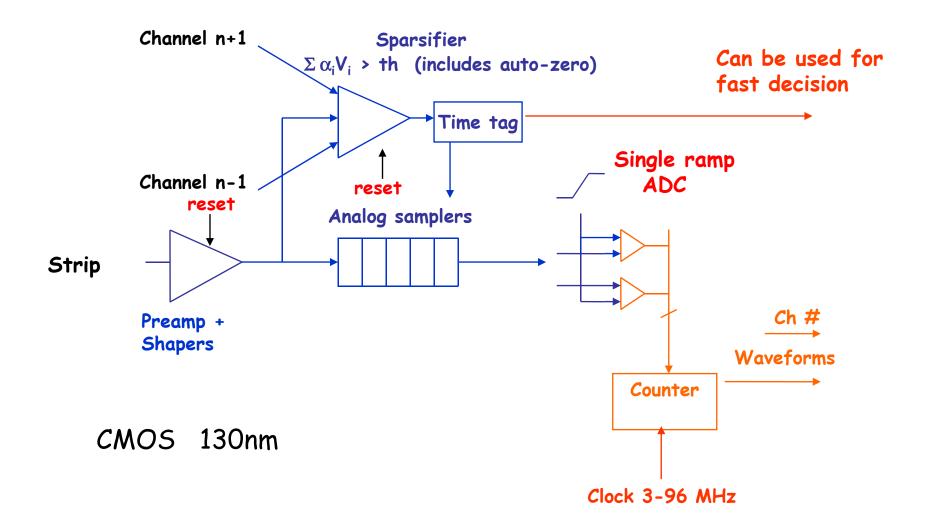
- Smaller
- Faster
- Less power
- Will be (is) dominant in industry
- (More radiation tolerant)

Drawbacks:

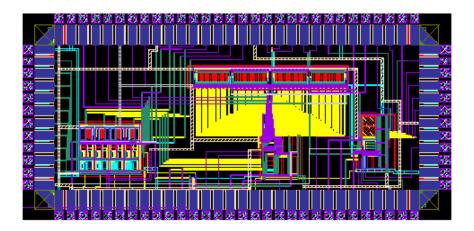
- Reduced voltage swing (Electric field constant)
- Noise slightly increased (1/f)
- Leaks (gate/subthreshold channel)
- Design rules more constraining
- Models more complex, not always up to date

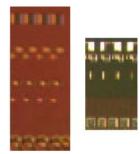
Millions of channels: Integration of k-scale channels readout chips

UMC CMOS Technology parameters

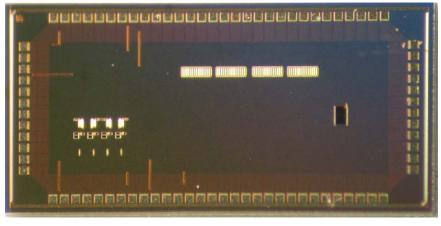

2006-7 Chips

130nm CMOS

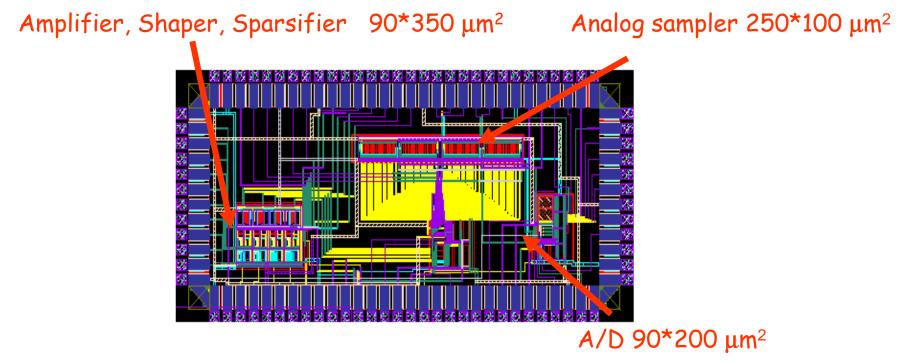

Both under test


Chip -1 4 channels

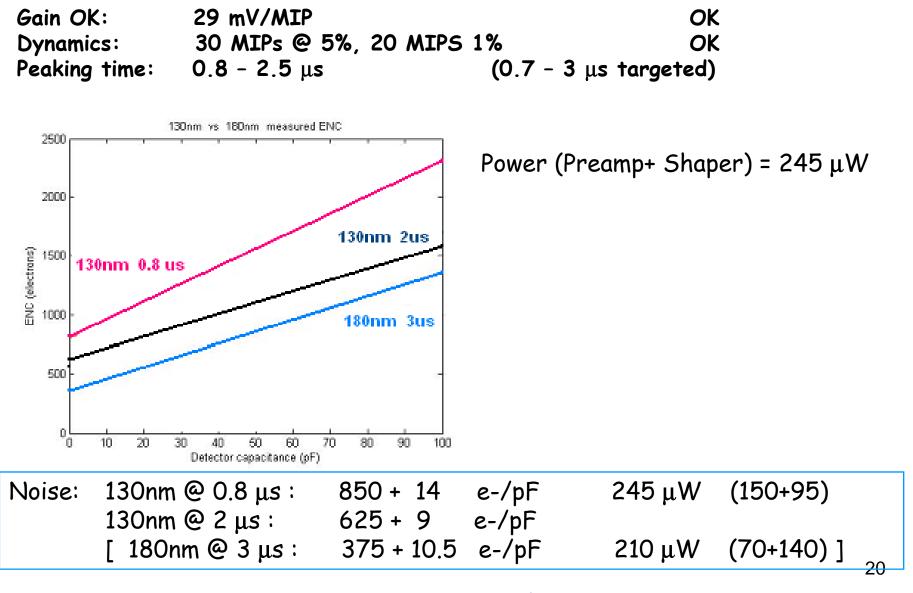
- Preamp-shapers + Sparsifier
- Pipeline 1
- ADC
- Digital
- Chip -2 One channel
- Preamp-shapers + Sparsifier
- DC servo
- Pipeline 2 (improved)
- DAC
- Test structures: MOSFETS, passive


4-channel 130nm Silicon

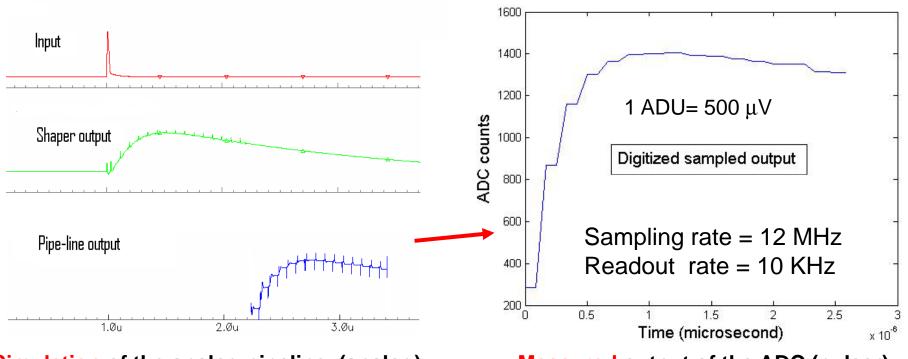
180nm 130nm


Layout of the 130nm chip including sampling and A/D conversion

Picture


4-channel chip layout

Layout of the 130nm chip including sampling and A/D conversion

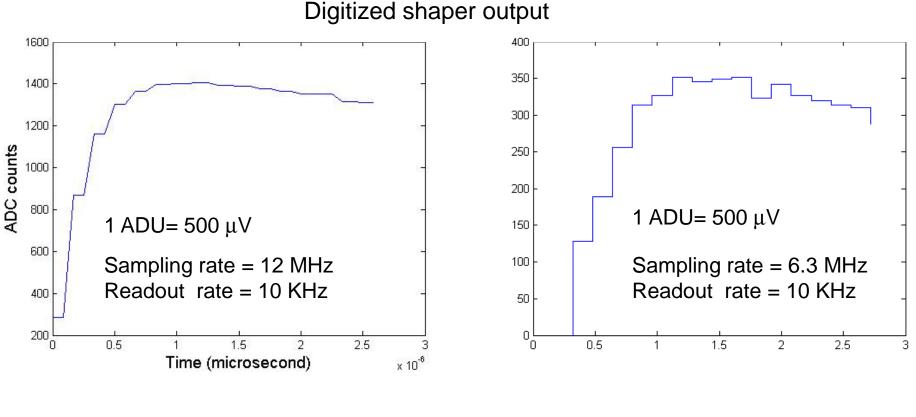

Measured gain - linearities **Results** Preampli and Shaper's Linearity 1200 shaper output * - fited shaper output + Preampli output Preamp output fited preampli output 1000 Mode Acquisition 800 Echantillon J. The Détect. crête (< 250Me/s) Output(mV) Enveloppe 16 600 Moyenne 16 Ch2 20.0mVΩ%M 2.00μs A Ch4 J 112mV 400 **T** 50.00 % Réinit. retard Réglage auto. Mode Fréquence d'échantillonnag 500MEch/s horizont horizonta 200 Mode Acquisition Echantillon Détect. crête (< 250Me/s) 20 25 35 5 10 15 30 40 Input(MIPs) Enveloppe 16 Preamp and Shaper: Moyenne Gain = 29mV/MIP Ch1 20.0mV∿∿ M 2.00µs A Ch4 J 112mV Shaper output **T** 50.00 % Dynamic range = 20MIPs 1% Réinit Résol Réglage auto. Mode Fréquence d'échantillonnage 500MEch/s retard horizont 30 MIPs 5% Peaking time = $0.8-2.5\mu s / 0.5-3\mu s expected$ Jean-François Genat, EUDET Annual Meeting October 8-10th 2007 Palaiseau

130nm vs 180nm chip noise results

Jean-François Genat, EUDET Annual Meeting October 8-10th 2007 Palaiseau

Digitized analog pipeline output

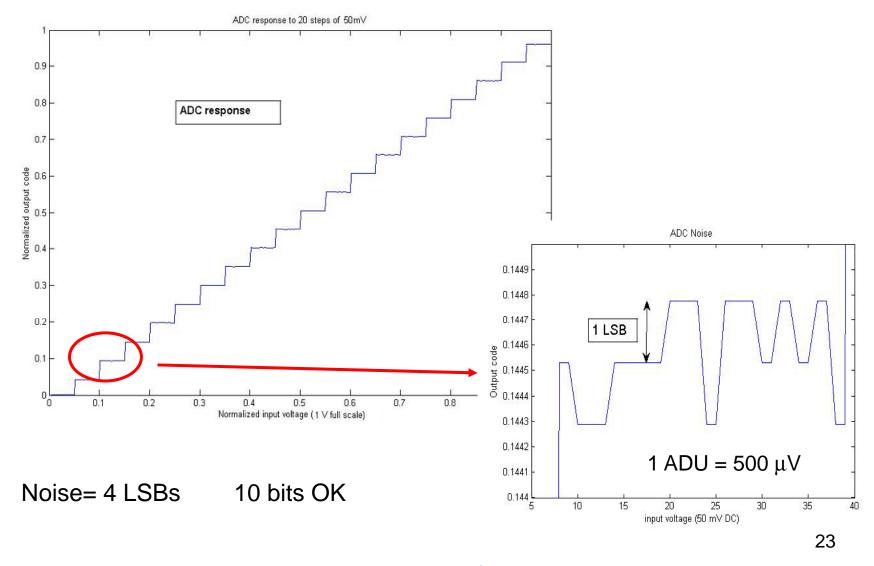
Simulation of the analog pipeline (analog)


Measured output of the ADC (pulser)

Waveform distorted due to 1pF parasitic capacitance of the output pad connected for analog diagnostics on 2 out of four channels

Traces cut using IFB to get all shaper channels operational to ADC for beam tests

Chip 2 includes a voltage buffer between shaper and ADC


Digitized analog pipeline output Laser response of detector + 130nm chip

From pulser

From Laser diode + Silicon detector

ADC evaluation

Jean-François Genat, EUDET Annual Meeting October 8-10th 2007 Palaiseau

130-1 chip's tests to come

- Lab tests: Measure ADC extensively
- Linearities Integral, differential
- Noise Fixed pattern, random
- Speed Maximum clock rate
- Accuracy Effective number of bits
 - Beam tests at CERN next week

130 nm-2

LAPP Annecy le Vieux R. Hermel, D. Fougeron LPNHE Paris T-H. Pham, R. Sefri

One channel test version in 130nm including:

- Preamp + shaper
- Improved pipeline (output buffer)
- Calibration channel (calibration caps)
- Calibration DAC

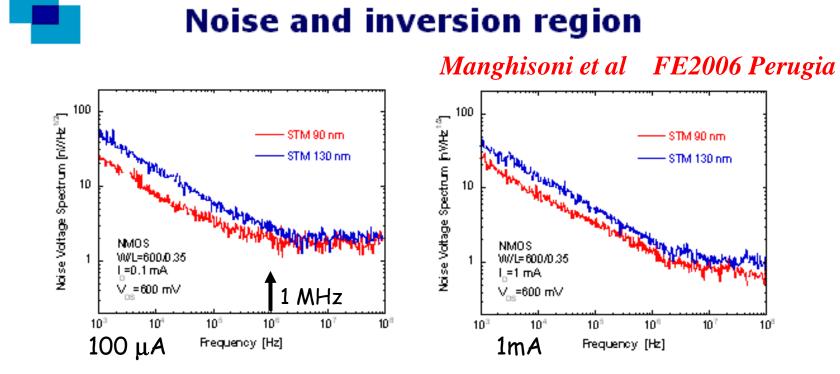
Presently under test at LAPP Annecy:

If OK, all analog blocks will be validated for a multi-channel version in 130nm aiming to read a full detector in 2008

130-2 tests under work (LAPP Annecy)

Measure improved pipeline extensively

Denis Fougeron's (LAPPAnnecy) design


Linearities	
Noise	Integral, differential
• NUISE	Pedestal fixed pattern, random noise Maximum clock rate
Droop	
ADC Driving	Hold data for 1 ms at the ILC

Some issues with 130nm design

- Noise likely modeled pessimistic, but measured quite acceptable
 90nm could be less noisy (Manghisoni, Perugia 2006)
- Lower power supplies voltages reducing dynamic range
- Design rules more constraining
- Some (via densities) not available under Cadence Calibre (Mentor) required.
- Low Vt transistors leaky (Low leakage option available at regular Vt)

Manageable, UMC design kits user friendly, Europractice very helpful.

130-90nm noise evaluation (STM process)

At low drain current both devices work in the weak inversion region → channel thermal noise is roughly the same for both devices

- At high drain current, a significant difference in the channel thermal noise can be detected ← device from the 90 nm technology works closer to weak inversion region.
- Better 1/f noise performance provided by the STM 90 nm technology

VI International Meeting on Front-End Electronics, Perugia, May 18th 2006

12

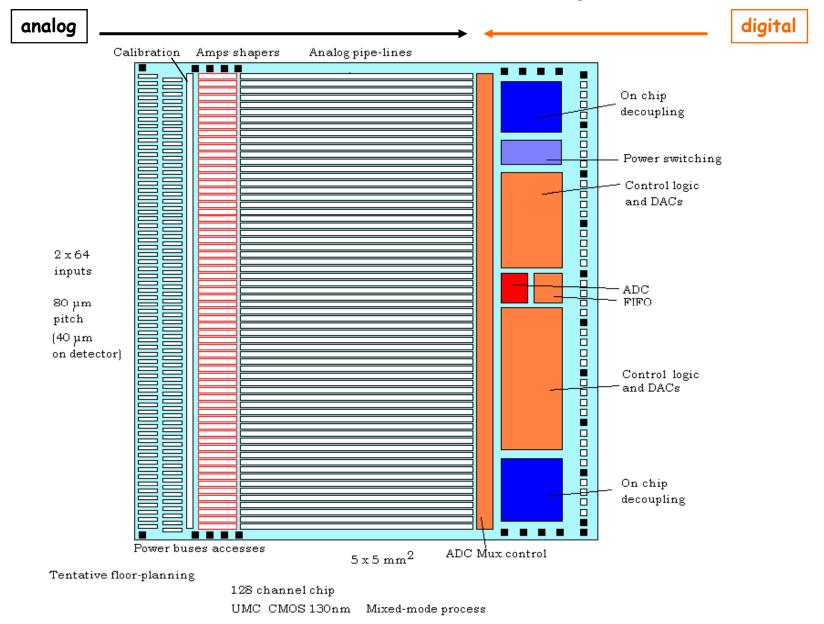
Outline

•	Detector data	2
•	Technologies	5
•	Front-End Electronics	7
•	130nm chips	11
•	128-channel chip	29
•	Conclusion	38

Goal: Equip a full detector

- Experience from lab test bench + laser/source and 2007 beam-tests
- Full 128-channels with :
 - Preamp-shapers
 - Sparsifier
 - Pipeline (8-sampling + 8-deep event buffer)
 - 12bits ADC
 - Digital
 - Calibration
 - Power cycling

Improvments wrt chip 130-1:


- Increase order of the shaper to 3 should reduce noise by 20-30% at a moderate increase in DC power.
- Pipeline (8-sampling + 8-deep event buffer) includes a buffer to drive the ADC.
- Full digital control
- Full calibration and channel disable
- Power cycling

Paris, September 27-28th 2007 A. Comerma (Barcelone), Thanh Hung Pham, JFG Tentative specs for a Silicon strips 128-channel readout chip

I/O

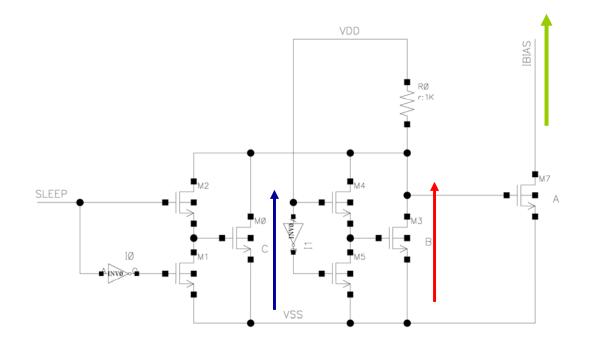
<u>Preamp</u>					
128	Inputs			128	
128	Outputs				
1	Bias_preamp	Control DAC	6 bits		
1	V_ref	"	"	1	
1	Bias_buf "	"	"	1	
<u>Shaper</u>					
Inputs	3				
128	Outputs				
1	Bias_shaper	"	"	1	
2	V_pole, v_zero	"	"	1	
Sparsifier					
3 x 128	Inputs				
128	Outputs				
1	Auto-zero control				
1	Bias_sum_1	"	"	1	
1	Bias_sum_2	"	"	1	
1	Bias_comp	"	"	1	
1	Threshold	"	"	1	4 more pages
128	Outputs				

Chip splits in 14 functional blocks

Connexion to detector and external

Layout allows :

- Wire-bonding
- Stud-bonding
- Bump-bonding
- Even 3D interconnect...


Planned Digital Front-End

- Chip control
- Buffer memory
- Processing for
 - Calibrations
 - Amplitude and time least squares estimation, centroids
 - Raw data lossless compression
 - Tools
- Cadence DSM Place and Route tool
- Digital libraries in 130nm CMOS available
- Synthesis from VHDL/Verilog
- SRAM
- Some IPs: PLLs

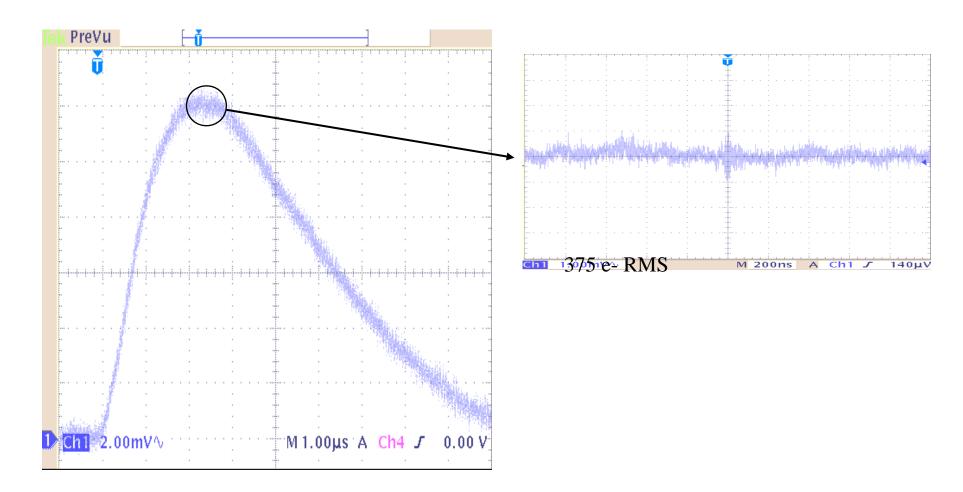
Need for a mixed-mode simulator

Power cycling

Switch the current sources between zero and a small fraction (10^{-2} to 10^{-3}) of their nominal values

This option switches the current source feeding both the preamplifier & shaper between 2 values:

Zero or a *small fraction* (0.1% - 1%) of biasing current is held during « power off ».


Zero-power option tested on 180nm chip (slow, but works)

Schedule

Nov '07	- Complete 130-1 and -2 chips tests
December '07	- Complete analog and digital blocks
January '07	- Merge
February '08	- Submission, test bench development
	 Card development for TPC+Silicon tests
May '08	- Tests: lab
July '08	 Connexion to HPK detectors Tests with HPK detectors: laser, source Beam tests.

September '08 - OK

Shaper output noise

375 e- +10.4 e-/pF input noise with chip-on-board wiring 275 + 8.9/pFsimulated

Tests Conclusions

12 chips tested ('05)

The UMC CMOS 180nm process is mature and reliable:

- Models mainly OK
- Only one transistor failure over 12 chips
- Process spreads of a few %

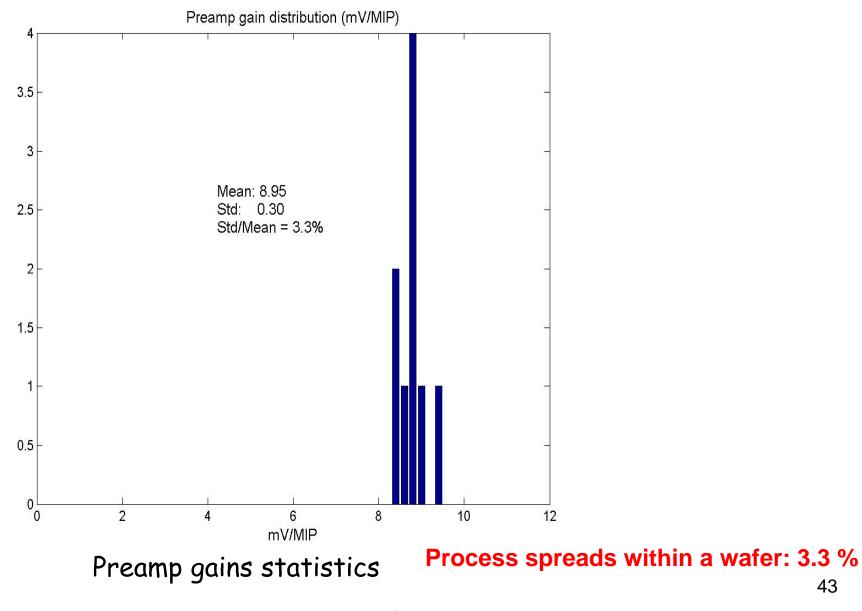
Beam tests in October '06 at DESY

Encouraging results regarding CMOS DSM

_____ go to 130nm

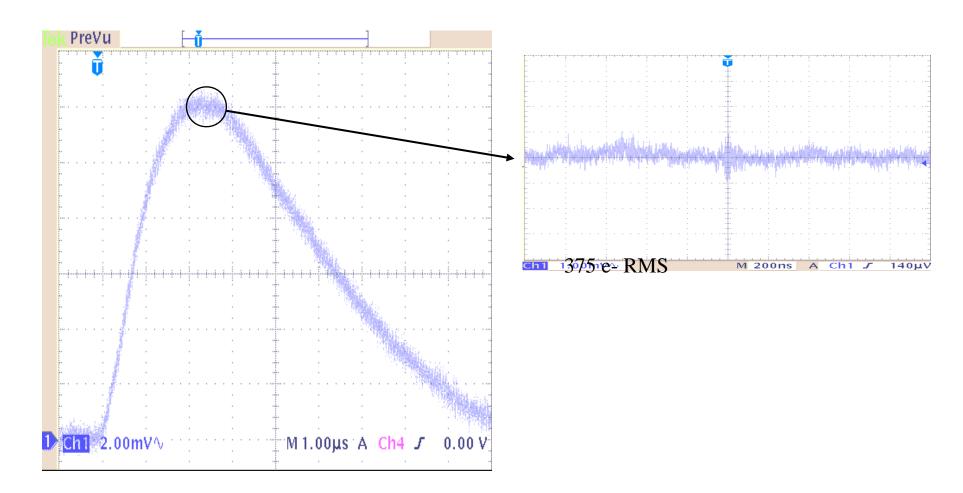
Conclusion

These CMOS 130 designs and first test results demonstrate the feasibility of a highly integrated front-end for Silicon strips (or large pixels) with


- DC power under 500μ W/ch
- Silicon area under 50 x 1000 μ^2 /ch

The End ...41

Jean-François Genat, EUDET Annual Meeting October 8-10th 2007 Palaiseau


Backup

Process spreads

J-F Genat, EUDET Annual Meeting October 17-18th 2006 Muenchen

Shaper output noise

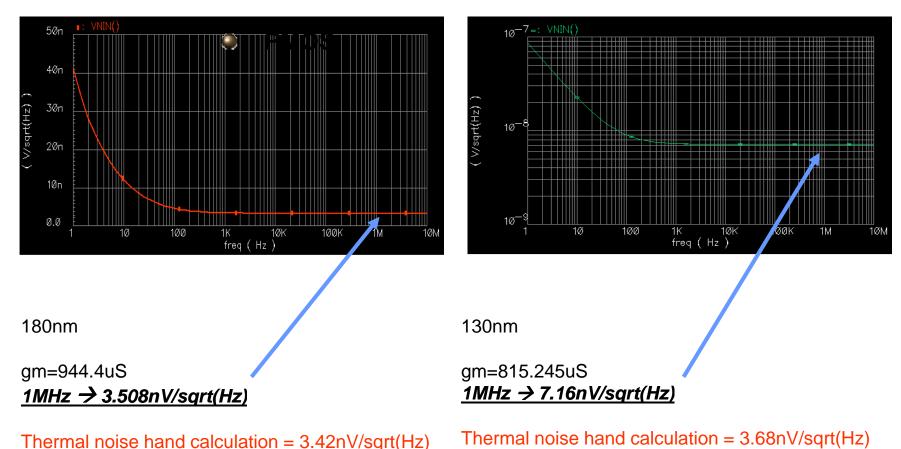
375 e- +10.4 e-/pF input noise with chip-on-board wiring 275 + 8.9/pFsimulated

Tests Conclusions

12 chips tested ('05)

The UMC CMOS 180nm process is mature and reliable:

- Models mainly OK
- Only one transistor failure over 12 chips
- Process spreads of a few %

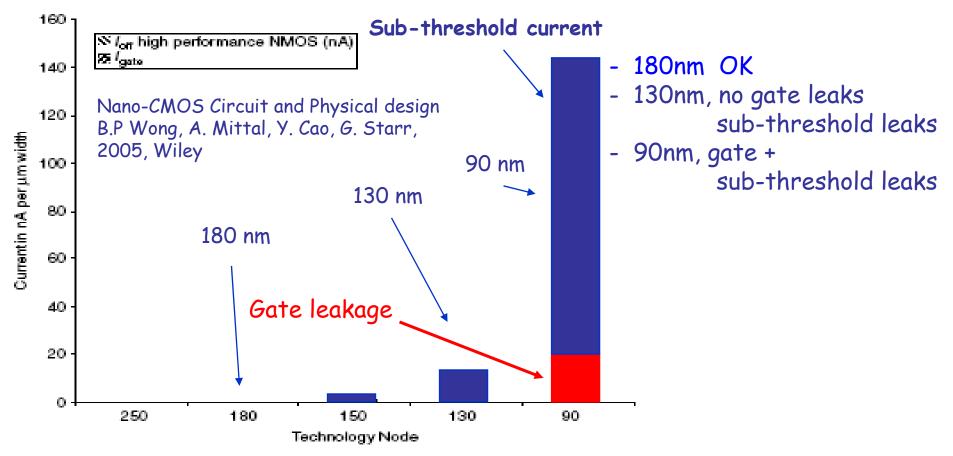

Beam tests in October '06 at DESY

Encouraging results regarding CMOS DSM

_____ go to 130nm

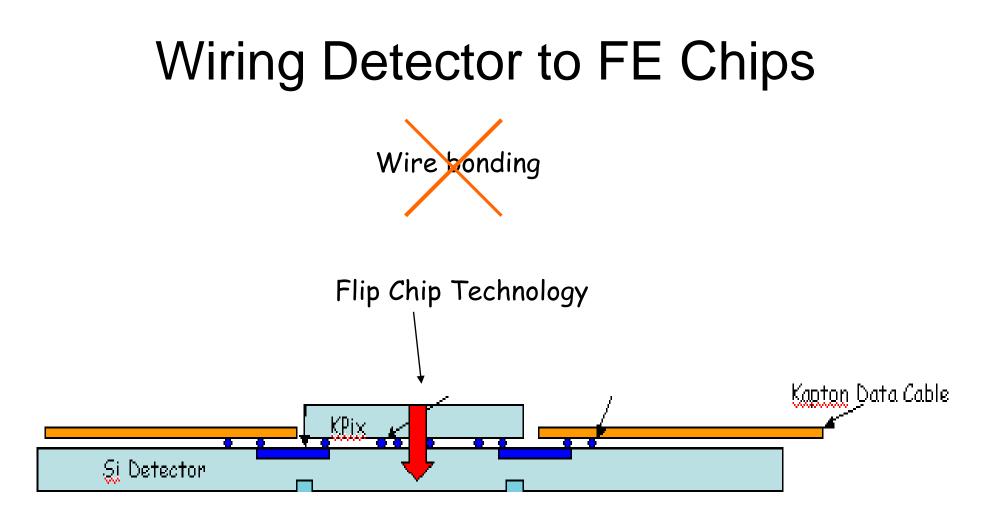
Possible issues: noise: 130nm vs 180nm (simulation)

PMOS

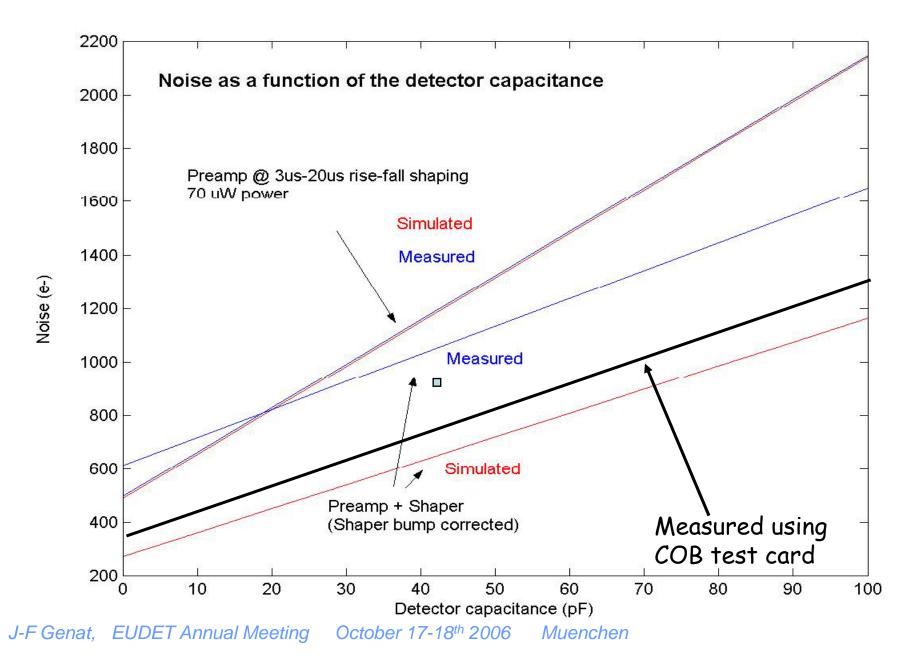


Thermal noise measured by Wladimir Gromov (NIKHEF) with IBM130nm OK 46

J-F Genat, EUDET Annual Meeting October 17-18th 2006 Muenchen

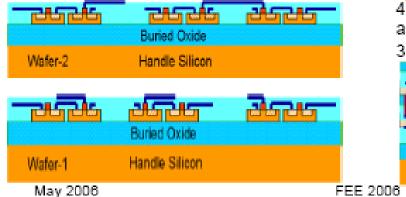

Transistors leaks

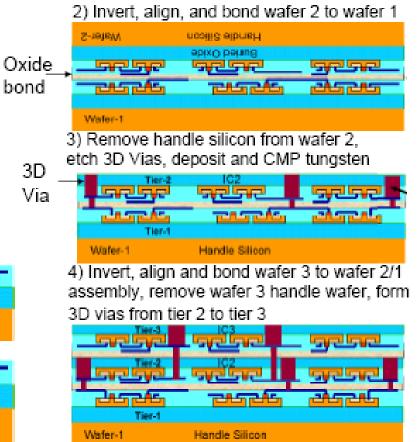
- Gate-channel due to tunnel effect
- Through channel when transistor switched-off


J-F Genat, EUDET Annual Meeting October 17-18th 2006 Muenchen

Courtesy: Marty Breidenbach (Cal SiD)

OR (later)

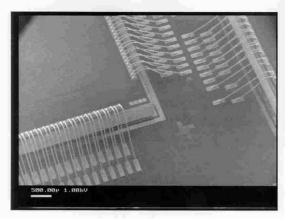

Noise summary (180nm)

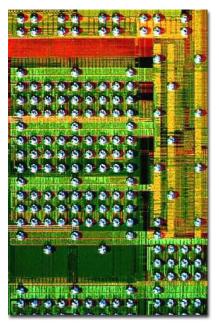


3D Wiring Process flow for 3D Chip

- 3 tier chip (tier 1 may be CMOS)
 - 0.18 um (all layers)
 - SOI simplifies via formation
- Single vendor processing

1) Fabricate individual tiers

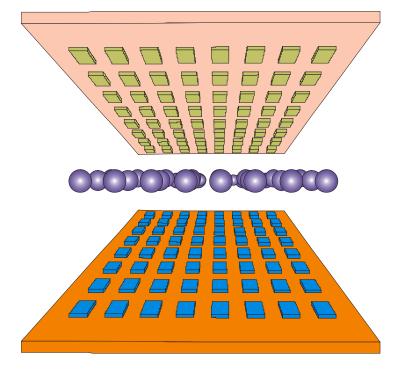

Courtesy: Ray Yarema, FEE 2006, Perugia

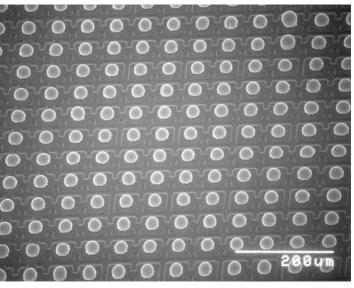

J-F Genat, EUDET Annual Meeting October 17-18th 2006 Muenchen

36

Manuel Lozano (CNM Barcelona) Chip connection

- Wire bonding
 - Only periphery of chip available for IO connections
 - Mechanical bonding of one pin at a time (sequential)
 - Cooling from back of chip
 - High inductance (~1nH)
 - Mechanical breakage risk (i.e. CMS, CDF)
- Flip-chip
 - Whole chip area available for IO connections
 - Automatic alignment
 - One step process (parallel)
 - Cooling via balls (front) and back if required
 - Thermal matching between chip and substrate required
 - Low inductance (~0.1nH)





Manuel Lozano (CNM Barcelona) Bump bonding flip chip technology

- Electrical connection of chip to substrate or chip to chip face to face flip chip
- Use of small metal bumps

bump bonding

CNM

Process steps:

- Pad metal conditioning:

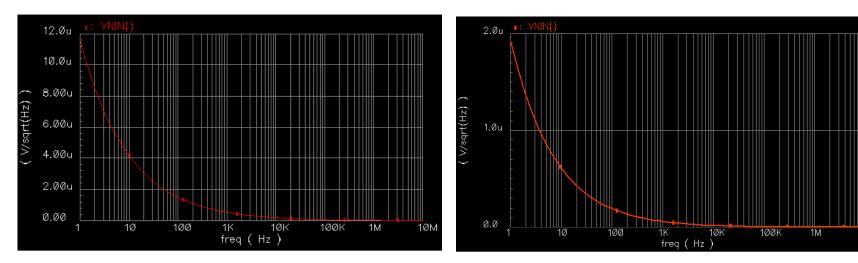
Under Bump Metallisation (UBM)

- Bump growing in one or two of the elements
- Flip chip and alignment
- Reflow
- Optionally underfilling

J-F Genat, EUDET Annual Meeting O

October 17-18th 2006

52


Manuel Lozano (CNM Barcelona) Bump bonding flip chip technology

- Expensive technology
 - Especially for small quantities (as in HEP)
 - Big overhead of NRE costs
- Minimal pitch reported: 18 μ m but ...
- Few commercial companies for fine pitch applications (< 75 μ m)

- Bumping technologies
 - Evaporation through metallic mask
 - Evaporation with thick photoresist
 - Screen printing
 - Stud bumping (SBB)
 - Electroplating
 - Electroless plating
 - Conductive Polymer Bumps
 - Indium evaporation

Noise: 130nm vs 180nm (simulation)

NMOS :

130nm W/L = 50u/0.5u Ids=48.0505u,Vgs=260mV,Vds=1.2V gm=772.031uS,gms=245.341uS,gds=6.3575uS **1MHz --> 24.65nV/sqrt(Hz)**

100MHz --> 5nV/sqrt(Hz) Thermal noise hand calculation = 3.78nV/sqrt(Hz) 180nm W/L=50u/0.5u Ids=47uA,Vgs=300mV,Vds=1.2V gm=842.8uS,gms=141.2uS,gds=16.05uS **1MHz --> 4nV/sqrt(Hz)**

10MHz --> 3.49nV/sqrt(Hz) Thermal noise hand calculation = 3.62nV/sqrt(Hz) 54