JRA1 – Next Steps towards the Final Telescope

Ingrid-Maria Gregor, DESY EUDET Annual Meeting Paris, October 2007

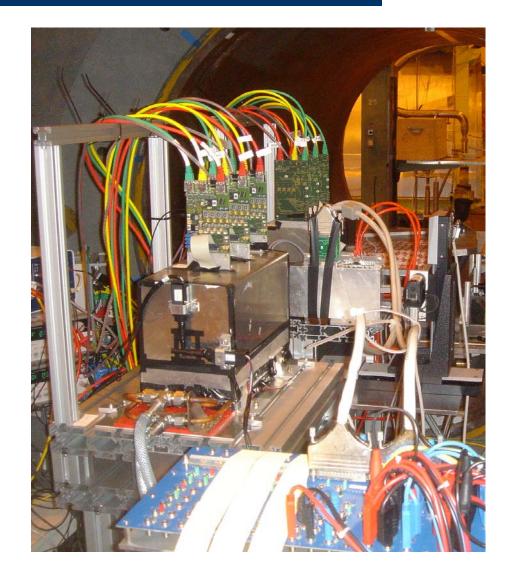
JRA1 Schedule

Phase1: "Demonstrator"

- First test facility will be available quickly for the groups developing pixels
- Use established pixel technology with analogue readout and no data reduction

Phase2: Final telescope

- Use pixel sensor with fully digital readout, integrated Correlated Double Sampling (CDS), and data sparsification
- The beam telescope ready at the end of 2008



Outline

- Introduction
- Immediate steps
- Milestones for final telescope
- Next steps for the PMAG
- Summary

Next Steps for Demonstrator

- □ TA2 user SiLC uses demonstrator at CERN H6 Testbeam (this week!)
- Afterwards:
 - Send most of hardware back to Hamburg
 - Keep 7-slot VME and 2 EUDRBs to Geneva
 - Put EUDRBs in new VME crate at DESY

Work on improvements:

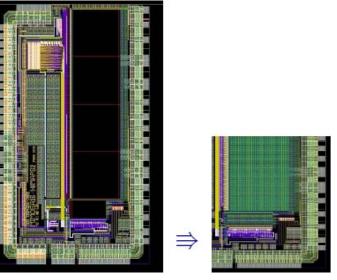
- □ Follow up DAQ improvements as mentioned by Emlyn and Concezio
- VME library: Julia Fourletova wants to help -> hardware to Bonn?
- □ Test EUDRBs in different VME crate and see if "noise" changes

Before end of year:

- □ Testbeam with thinned sensors (1-2) plus Mimosa 18 at DESY?
- (no testbeam available at DESY from January August!!!)
- Done by DESY team with offline support from JRA1

JRA1 Milestones

Milestone	Description	Date	Task	Status
JRA1-1	SDC Prototype 1 ready	9	С	completed
JRA1-2	Magnet available	12	А	completed
JRA1-3	SDC Prototype 2 ready	18	С	completed
JRA1-4	Field map available	18	A	soon available*
JRA1-5	Analog Telescope integration in beam	18	В	completed
JRA1-6	Readout for prototype available	18	D	completed
JRA1-7	IDC prototype ready	27	С	
JRA1-8	Final pixel telescope integrated in beam	36	В	
JRA1-9	TC ready	36	С	
JRA1-10	Final readout ready	36	D	
JRA1-11	Tracking software available	36	D	
JRA1-12	Test report analog telescope available	36	E	
JRA1-13	Final project reports	48	A,B,C,D,E	

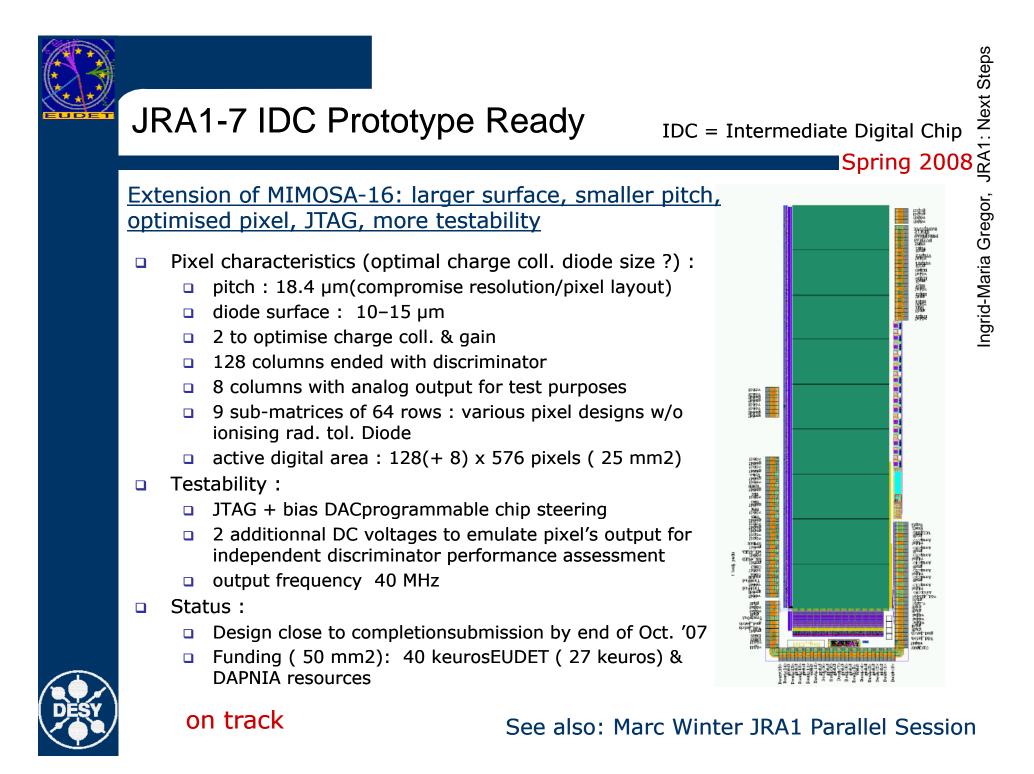


JRA1-7 IDC Prototype Ready

IDC = Intermediate Digital Chip

MIMOSA-16 design features:

- AMS-0.35 OPTO translation of MIMOSA-8: 11–15 μm epitaxy instead of <7 μm
 - **32** // columns of 128 pixels (pitch: 25 μm)
 - on-pixel CDS (DS at end of each column)
 - 24 columns ended with discriminator
- 4 sub-arrays :
 - S1 : like MIMOSA-8 (1.7x1.7 μ m² diode)
 - S2 : like MIMOSA-8 (2.4x2.4 μ m² diode)
 - S3 : S2 with ionising radiation tol. Pixels
 - S4 : with enhanced in-pixel amplification (against noise of read-out chain)



MIMOSA-16 tests at the SPSvery preliminary analysis results:

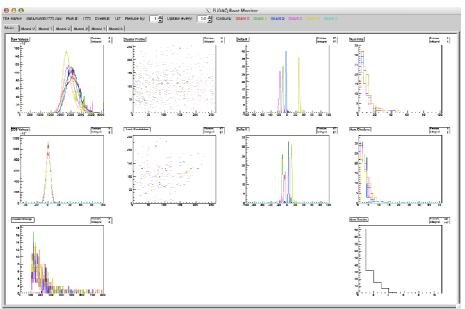
- □ The column architecture works very well
- There is at least one pixel architecture which works fine (SNR>16, ε=99.9 %) (Complementary info expected from the analysis of the other pixel architectures)

Spring 2008

End 2008

JRA1-10 Final readout ready

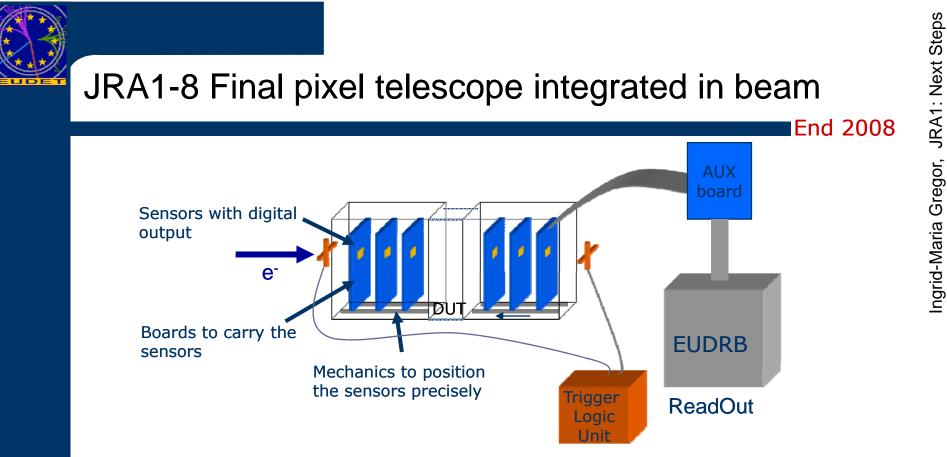
- Readout = from AUX boards to hard disk (EUDRB + EUDAQ)
- EUDRB completely tested and runs well with MimoTel chip
- Next step: readout speed needs to be improved
 - Mainly software side such as VME libraries need to be improved
 - Implement MBLT for initial pedestals and noise
- Final Telescope: modify the EUDRBs to be able to read out Mimosa22
 Design new daughter card?



JRA1-10 Final readout ready

End 2008

● ⊖ ⊖		eudaq Run Control		
Control				
Config: default			Config	
Run:			Start	
Log:			Log	
\subset		Reset	Stop	
Status				
Run Number: (1234) Triggers: Events Built:		Rate: Mean Rate: File Bytes:		
Connections				
туре 🛛	name	state	connection	
DataCollector	OK		127.0.0.1:60795	
LogCollector	OK		127.0.0.1:60791	
Producer	Test	OK: Configured (default)	127.0.0.1:60797	

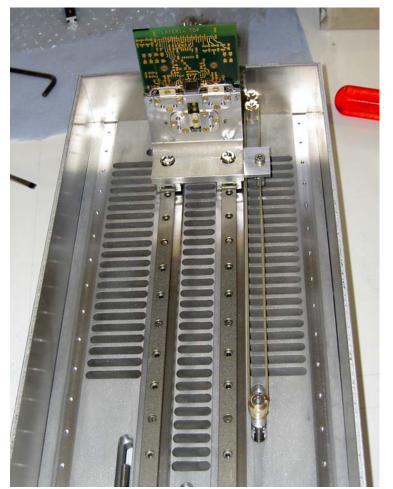


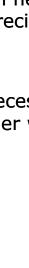
- EUDAQ: Already have a reasonable usable DAQ system, but a few remaining issues
 - □ Improve speed and stability
 - Run Control: GUI for configuration
 - Data Collector: Processing what/where?
 - Documentation

on track

See also: Emlyn Corrin JRA1 Parallel Session

All building blocks ready or on track, details were discussed in JRA1 parallel session




JRA1-8 Final pixel telescope integrated in beam

End 2008

Mechanics for final telescope:

- First version of mechanics used at CERN during testbeam
- Problems with heat transport from sensor and precision of sensor placement
- New design of L-pieces (sensor board holding frame) under way

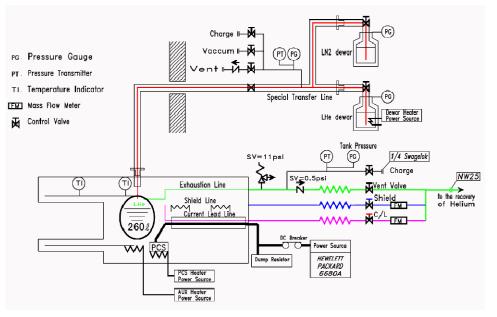
on track

See also: Ingrid Gregor JRA1 Parallel Session

End 2008

JRA1-11 Tracking software available

□ EUTelescope is working!


- The results obtained from the three data taking periods are proving that it is well behaving...
- A lot of work has been done and the milestone foreseen for the end of 2008 will be easily achieved.
- include the LCIO format in the DAQ software to avoid the conversion step.
- improve the alignment processor:
 - implement Millipede as a Marlin processor and include it into MarlinUtil
- improve the integration with the DUT user. A good exercise will be the integration of the DEPFET sensor and will start with the next month.
- improve the currently available event display.
 - In contact with other JRA members

Next Steps for Magnet

- Improvement of the cryogenic system is necessary for safer and easy operation of the PCMAG in the DESY experimental area.
- The new safety regulations at DESY forbid any work higher than 2m without proper protection and training.
- a new transfer tube with a cold helium-gas vent to minimize the heat flow into the reservoir and minimize the work on the top of magnet.
- More important: new transfer line would eaze He filling of magnet
- No dewar exchange necessary

JRA1 Milestones

Milestone	Description	Date	Task	Status
JRA1-1	SDC Prototype 1 ready	9	С	completed
JRA1-2	Magnet available 12		A	completed
JRA1-3	SDC Prototype 2 ready	18	С	completed
JRA1-4	Field map available	18	A	soon available
JRA1-5	Analog Telescope integration in beam	18	В	completed
JRA1-6	Readout for prototype available	18	D	completed
JRA1-7	IDC prototype ready	27	С	on track
JRA1-8	Final pixel telescope integrated in beam	36	В	on track
JRA1-9	TC ready	36	С	on track
JRA1-10	Final readout ready	36	D	on track
JRA1-11	Tracking software available	36	D	on track
JRA1-12	Test report analog telescope available	36	E	
JRA1-13	Final project reports	48	A,B,C,D,E	

Summary

- JRA1 group build and tested in the recent months the Demonstrator telescope and is happy about the status of the project
- Next steps will concentrate on the final telescope, using the final telescope chip (intergrated discriminator), final readout and newly improved mechanics
- Softwarewise (DAQ, Tracking Software) also very well on track

 Preparation to meet all the milestones are well under way and we are optimistic that we will meet all future milestone

