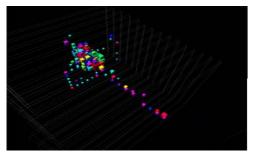
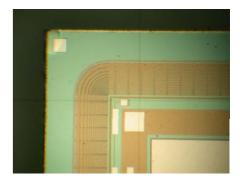


Silicon Wafers for EUDET module design and test bench

Akli Karar (LLR) Jean Charles Vanel (LLR) <u>Rémi Cornat</u> (LPC) Mustapha Benyamna (LPC)

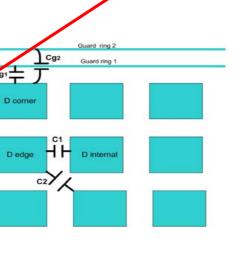


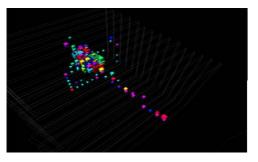
Overview


- Square events issue
 - Hints
 - Guardrings design
 - Simulations
 - Hardware tests
- Test bench
 - Technological studies
 - Active Sensor Unit characterization
- Status of the Production
- Plans

Understand the origin of Square events

Guard-rings are needed to avoid high leakage current at the wafer border...


The square shape corresponds to guard-rings location

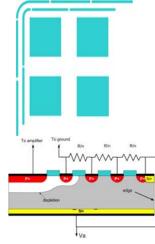

Effects of a particle hit on guard-rings could be propagated to every bordering pixels

= cross-talk effect

Other source effects ? Need to check and crosscheck...

Find a turnaround

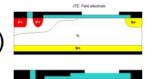
Square event issue must be solved


Many possibilities to explore

- Guardring implementation
- Guardring technology
- Others ?

Guardring implementation

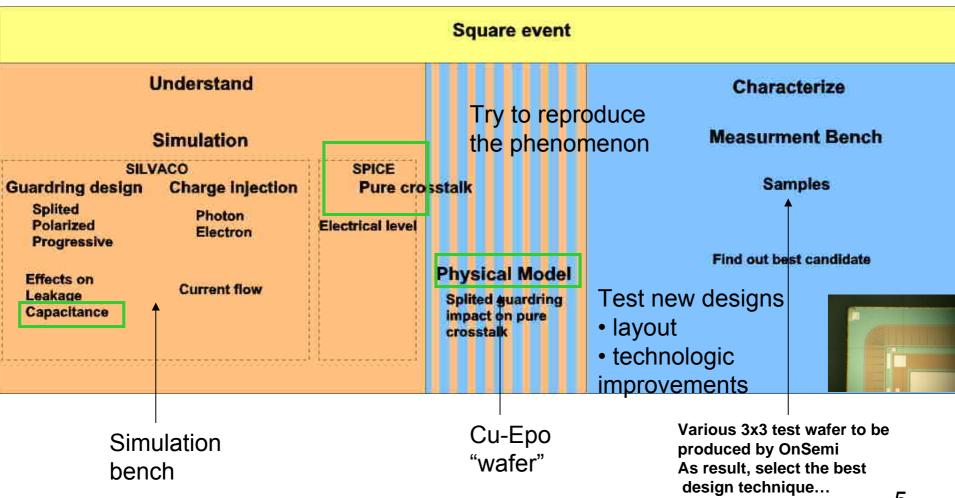
- continuous (baseline)
- segmented
- polarized


With various spacing and V

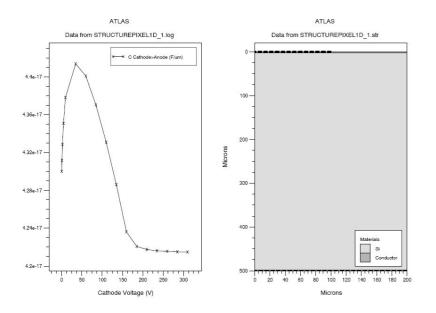
See Akli's talk @ Seoul

Guardring technology

- P+ implant (standard)
- progressive doping
- MOS
- brutal etching
- new ?


Others ?

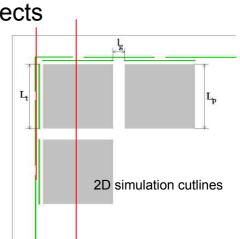
• Priority given to crosstalk as it is most probable and "easy" to test segmented topology


Crosstalk hypothesis verification Method

Simulations with SILVACO

C(V) between pixel and common bias and C(V,a,b,c,d...)

First step to verify capacitance values between pixels, guardrings, substrate


Then back annotate to SPICE simulation

Simulated Cap. Values are within a 20% range from expected values calculated with first order formula

3D simulation are ongoing to take into account border effects

Second step to simulate ionization effects (electron or photon) or SEE/SEU events

Third step (following months) to evaluate design parameters impact on C and explore new designs of guardrings from crosstalk point of view

Segmented guard-rings technique diaphonie pixel – 3x3 matrix may prevent Xtalk by a factor 3 Cgb = 4 pF Cgg=24pF Cpg = 1 pF

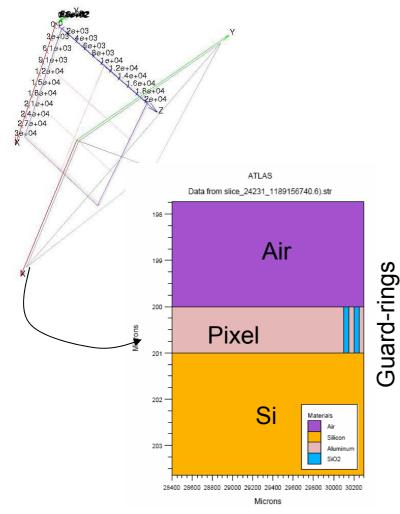
Simulations with SPICE

	Plain guardring						
5.6			5.6		5.6		
		1	100	1			
5.6		0.3		0.3	5.6		
		0.5	0.3	0.5			
5.6			5.6		5.6		

Guardring non segmenté, Signal at G1				
		100		
	20	5.6	20	
	20	5.0	20	
	5.6	-	5.6	
	20	5.6	20	

	Segmented guardring 160 fF					
2			42		2	
		0.3	100	0.3		
2		0.1	-	0.1	2	
		0.15	0.08	0.15		
2			2		2	

Guardring 1 segmenté, **Signal at G1_2 segment**, Css=160 fF


6		100		6
	1	5.6	1	
4	0.2	-	0.2	4
	0.4	0.2	0.4	
4		4		4

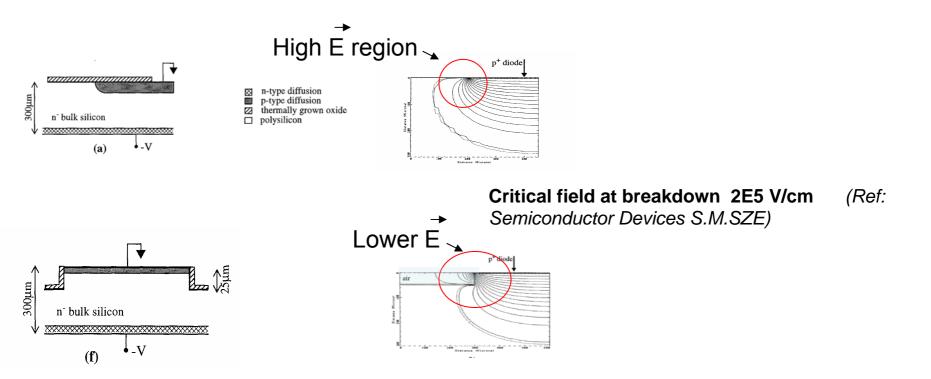
Simulations with SILVACO 3D

ATLAS Data from 4STRUCTURE_6PIXEL3D_4guard_1.str

6 pixels and guard-rings

3D simulations enabled

3D simulation are ongoing to take into account border effects


3D caps extracted : same range as for 2D

Next steps :

- SPICE simulations with extracted parameters
- radiation induced effect (photon and ionizing particles)

Angle etched wafers

Fine for breakdown = guard-ring replacement No capacitance induced crosstalk

A vertical high voltage termination structure for high-resistivity silicon detectors

Segal, J.D.; Kenney, C.J.; Aw, C.H.; Parker, S.I.; Vilkelis, G.; Iwanczyk, J.S.; Patt, B.E.; Plummer, J. Nuclear Science Symposium, 1997. IEEE Volume , Issue , 9-15 Nov 1997 Page(s):299 - 303 vol.1

http://ieeexplore.ieee.org/iel4/5472/14772/00672589.pdf?arnumber=672589

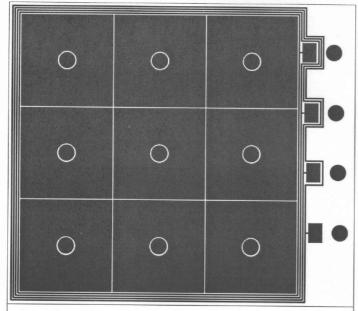
Table 1: Comparison of high voltage termination structure simulation results for 300µm thick 1e12/cm³ n-type bulk requiring 70V to deplete, with 2µm deep p-type junction,

junction termination structure	peak electric field for Q _f =0	peak electric field for Q _f =1e11/cm ²	
un-improved diode	3.9E4 V/cm	8.0E4 V/cm	
three floating rings (optimized) But square events	1.3E4 V/cm	3.1E4 V/cm	
poly field plate extension (at uniform bias)	2.8E4 V/cm	5.8E4 V/vm	
poly field plate extension (with linear voltage gradient)	0.8E4 V/cm	1.0E4 V/cm	
linear implant gradient	1.5E4 V/cm	2.3E4 V/cm	
vertical etch junction termination	2.0E4 V/cm	4.7E4 V/cm	
angled etch junction termination	2.5E4 V/cm	6.0E4 V/cm	

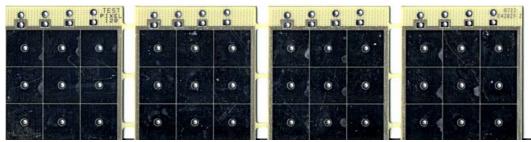
Critical field at breakdown 2E5 V/cm

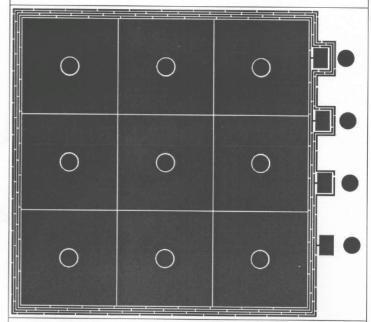
(Ref: Semiconductor Devices S.M.SZE)

A vertical high voltage termination structure for high-resistivity silicon detectors


Segal, J.D.; Kenney, C.J.; Aw, C.H.; Parker, S.I.; Vilkelis, G.; Iwanczyk, J.S.; Patt, B.E.; Plummer, J. Nuclear Science Symposium, 1997. IEEE Volume , Issue , 9-15 Nov 1997 Page(s):299 - 303 vol.1

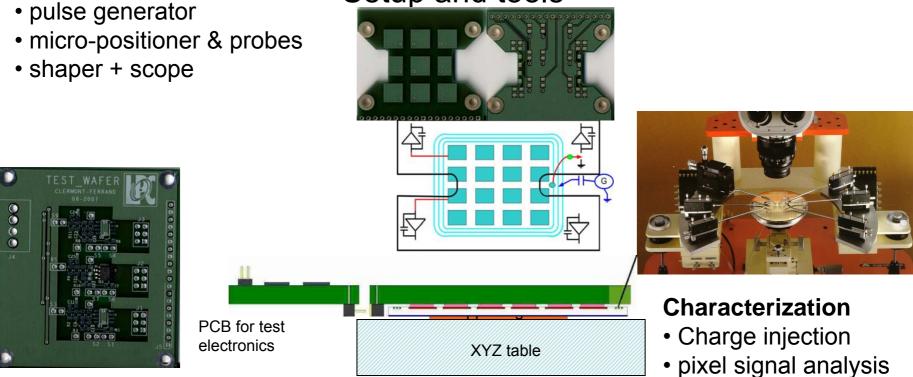
All these techniques can be simulated in accordance with ECAL wafer characteristics




Physical Model : Cu-Epoxy

Study pure crosstalk effects (various configurations)
Measurement method validation
Test bench calibration

Continuous guardring



- Splited guardring
- •4 @ 1 cm
- •4 @ 3 mm
- •2 @ 1 cm + 2 unsplited

Hardware Test bench

Setup and tools

Includes 3 OPA (OPA380 or OPA657) for signal shaping and trans-impedance adaptation to a scope

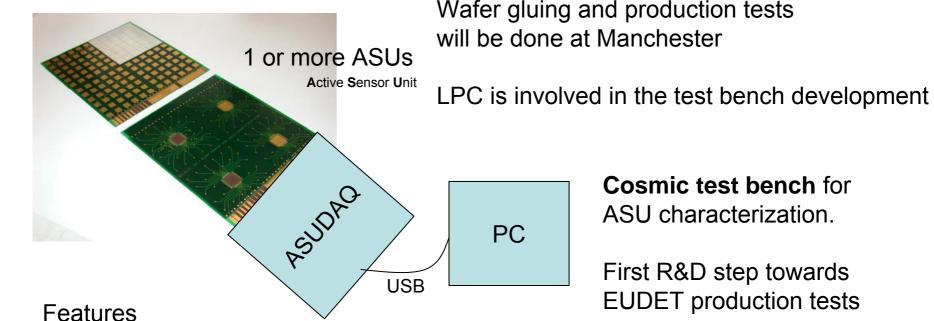
Nd:YAG laser could be used to inject signal (or by simulations)

Wafer Production Status

Jean-Charles Vanel (LLR)

Production of june'07 : Total of 79 matrix, tested at LLR

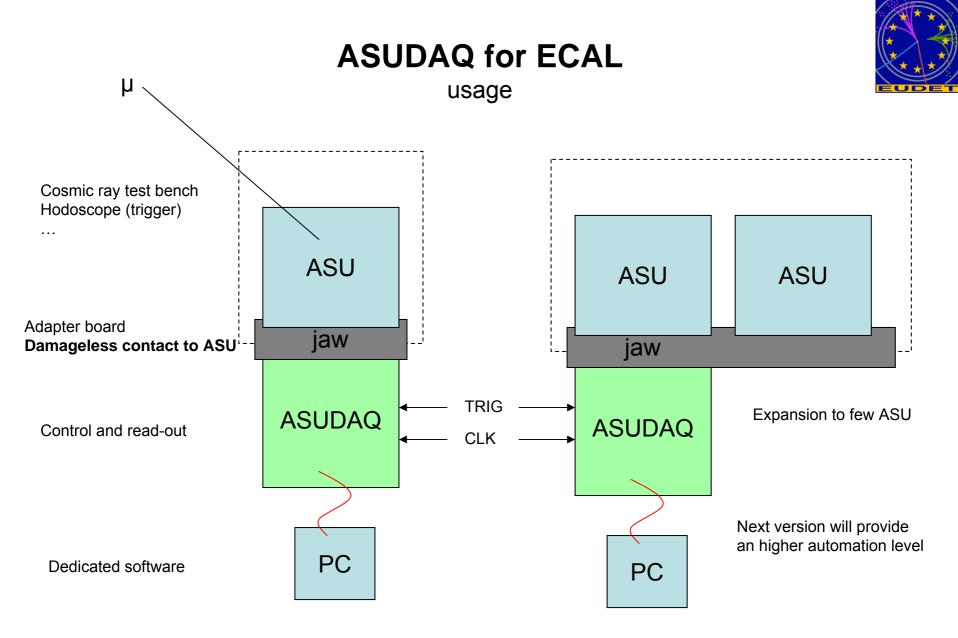
OK : 52 intermediate : 20 Bad : 7 mounted : 44 28 matrix available as "spare"


Hamamatsu, OnSemi, ... : first approach of 6 inches wafers (18x18 pixels)

Prototype finished !!!!!!!

Now, going to EUDET module

ASUDAQ for ECAL R&D on ASU



full slow control including internal probing system control

- access to analog test points (embedded ADC)
- read out of 4 SKiROC through USB & PC
- cosmic bench environment support (triggers)
- mechanical jaw providing damageless contacts to ASU

A board is being designed at LPC

Plans & Conclusion

Visit to OnSemi (Roznov, Cz) on 14 september 07

3x3 wafers specs and manufacturing

Simulations : on going

3D extraction of parameters

Calibration of the hardware test bench : november

Harware tests : early 08

3x3 test matrix

Cosmic test bench for ASU under design : 031

Simulations show that the crosstalk decreases by a factor 5 to 10 with segmented guardrings

- 3x3 wafers
- check current leakage (sim)

Hardware test bench being set up

New guard-rings designs to explore

- angle etch
- doping profiles