

# Type IV Cryomodule (T4CM) Vibration Analysis Update

July 19, 2007

Mike McGee



### Status of T4CM & TTF Models

#### • Overhaul of TTF and T4CM models

• INFN-Pisa Support:

o Alessandro Vigni and Marco Cherubini

• FNAL Support:

• Ryan Doremus (U of I)



Mike McGee, 19 Jul 2007

ANSY JUL 19 2007 07:20:27



for T4CM 9-8-9 configuration was used



# Modal Example from Use Pass (combination of superelements)



Vector plots (view of center cryomodule)

4<sup>th</sup> T4CM Workshop at Fermilab

|                             | TTF   |        | T4CM  |        | Mode |
|-----------------------------|-------|--------|-------|--------|------|
|                             | Shape | f (Hz) | Shape | f (Hz) |      |
|                             | VL    | 8.4    | L     | 11.0   | 1    |
| L – Longitudinal            |       | 8.4    | Т     | 12.0   | 2    |
| Longraama                   |       | 8.6    | LQ    | 12.2   | 3    |
| T - Transverse              | LV    | 9.4    |       | 12.2   | 4    |
| VI - Vertical w/ Longitudir |       | 10.4   | LV    | 14.2   | 5    |
|                             |       | 10.9   |       | 14.9   | 6    |
|                             | Т     | 11.2   |       | 14.9   | 7    |
| LQ –Longitudinal Quad       | VL    | 11.3   |       | 15.1   | 8    |
| Ouiescent                   |       | 11.4   | LQ    | 15.2   | 9    |
|                             | LV    | 13.2   |       | 15.2   | 10   |
| LV –Longitudinal W/ Vertica |       | 13.2   |       | 15.6   | 11   |
| Component                   |       | 13.4   | VL    | 15.9   | 12   |
| Primary                     | Τ     | 14.2   | LV    | 16.7   | 13   |
|                             | LV    | 15.1   |       | 17.5   | 14   |
| Secondary                   |       | 15.1   | Т     | 17.8   | 15   |
|                             |       | 15.4   |       | 17.9   | 16   |
| Ternary                     | LV    | 16.1   | LQ    | 18.6   | 17   |
|                             | Т     | 18.3   |       | 19.4   | 18   |
| 🕹 🕹 Fermilah 📃              | Т     | 18.4   |       | 19.5   | 19   |
|                             | VL    | 18.6   | VL    | 20.2   | 20   |

4<sup>th</sup> T4CM Workshop at Fermilab

wike wicgee, 19 Jul 2007



### **T4CM Mode 2 – 12 Hz** (transverse pendulum)



Note: vacuum vessel and other components are present Fermilab



4<sup>th</sup> T4CM Workshop at Fermilab

#### T4CM Mode 15 – 17.8 Hz (transverse pendulum 2<sup>nd</sup> harmonic)





4<sup>th</sup> T4CM Workshop at Fermilab

### T4CM Mode 16 – 18 Hz (transverse pendulum 2<sup>nd</sup> harmonic)



#### Modes 15 & 16 are symmetric



4<sup>th</sup> T4CM Workshop at Fermilab

#### T4CM Modes (longitudinal quad quiescent)

Large contribution to fundamental modes of 3 (12.2 Hz), 4 (12.2 Hz), 9 (15.2 Hz), 10 (15.2 Hz), 11 (15.6 Hz), 17 (18.6 Hz), 18 (19.4 Hz) and 19 (19.4 Hz)



4<sup>th</sup> T4CM Workshop at Fermilab



#### T4CM Mode 20 – 20.2 Hz (vertical longitudinal 1<sup>st</sup> harmonic)





4<sup>th</sup> T4CM Workshop at Fermilab



### Study Effect of Additional Transverse Stiffness and Damping

- Adding transverse spring constant and damping to CM at IC locations
  - Elements defined at interconnection between vacuum vessel and 80 K shield
  - Elements defined at interconnection between 80 K shield and 5 K shield
- Single TTF Model considered
- TTF and T4CM 3-in-series Study in progress



#### **Transverse Spring-Damping Study**



Attempt to account for added stiffness of thermal straps and cables

Add stiffness and damping

Transverse frequencies beneath ~20 Hz were not measured on Cryomodule #6



## Preliminary Transverse Stiffness and Damping Results

Table 2. Summary of Transverse Stiffness Study.

|      | Frequency (Hz)             |           |  |  |
|------|----------------------------|-----------|--|--|
| Mode | No Transverse<br>Stiffness | 50 (N/mm) |  |  |
| 1    | 11.1                       | 13.1      |  |  |
| 2    | 12.2                       | 15.1      |  |  |
| 3    | 13.1                       | 17.1      |  |  |
| 4    | 14.3                       | 19.4      |  |  |
| 5    | 15.1                       | 19.5      |  |  |

#### Single TTF CM with fixed ends



Mike McGee, 19 Jul 2007

# DESY Cryomodule #6 Measurements and Validation



1) Ground vs Vacuum Vessel Top



Mike McGee, 19 Jul 2007

4<sup>th</sup> T4CM Workshop at Fermilab





#### **TTF Single ANSYS Model Applied**



Consider the DESY vertical measurement, by applying sine wave input with displacement (amplitude) at specific frequencies.

Example: Transfer function between ground and vessel top





### **Cryomodule Instrumentation Team**

- TD Members (Ruben Carcagno, Chair)
  - Mark Champion
  - Joe Ozelis
  - Darryl Orris
  - Yuriy Pischalnikov
  - Warren Schappert
  - Dmitri Sergatskov
- AD Members
  - Christine Darve
  - Mike McGee
  - Shavkat Singatulin
  - Jim Volk

4<sup>th</sup> T4CM Workshop at Fermilab



### **Cryomodule Instrumentation Tasks**

- Develop experience with cold geophones using HTS
- Apply cold geophones to cryomodule measurement
  - Define geophone locations within CM (implement cold calibration as developed by DESY)
  - Provide DAQ support
- Instrument TTF and T4CM Coldmass prior to installation at New Muon Lab (NML)



#### Future Work

- Begin Sensitivity Studies using T4CM model
- Study external floor support
- Implement instrumentation for cryomodules geophone and differential pressure transducer (TTF style and T4CM)
- Perform flow induced vibration studies through experiment at HTS and FEA (possible collaboration with INFN-Pisa)

