I C International Linear Collider

Cryomodule Transport Studies at Fermilab

July 20, 2007

Mike McGee & Chuck Grimm

4th T4CM Workshop at Fermilab

3.9 GHz Cryomodule Shock Evaluation

Preliminary Shock Criteria:
4g Vertically
5g Axially (along beamline)
0.5g Transverse
To be updated for 3.9 GHz,
based on impact properties of materials at RT (e.g. input coupler)

T. Whitlatch et al., "SHIPPING AND ALIGNMENT FOR THE SNS CRYOMODULE"

3.9 GHz Cryomodule Shock Evaluation

Dummy Load (w/ similar C.G.)

Fork Truck

Addition of Base Frame

Addition of Isolators

I L International Linear Collider

Preliminary 3.9 GHz Transport Fixture Vertical Shock Results

• Drop tests using a fork truck

- Geophones and accelerometers were used to evaluate isolator designs at maximum shock load (~ 8-g vertical)
- Isolators
 - Coil type

Goodyear air spring type
Inflated to 35 psi
Inflated to 50 psi
Inflated to 80 psi

Transverse Displacement Response to Vertical Shock

4th T4CM Workshop at Fermilab

Shock Example

Car passing over a speed bump

- 3" high half-sine wave speed bump
- Traveling 10 mph, 0.102 sec pulse
- Natural frequency 2.0 Hz with 25% damping
- o Vertical response
 - 8.2 g at base
 - 5.2 g on mass (m)

ILC International Linear Collider

3.9 GHz Transport Fixture Vertical Shock Result Summary

		Vertical		Transverse	
Case	Shock at Fixture (g)	Q-factor	Condition	Q-factor	Condition
Rigid Mount	8.0	2.8	Under-damped	6.2	Under-damped
M12A Coil (3/8" wire)	5.6	7.8	Under-damped	1.6	Under-damped
M16 Coil (1/2" wire)	4.9	4.7	Under-damped	0.3	Over-damped
Air Spring 35 psi	7.4	1.9	Under-damped	20.1	Under-damped
Air Spring 50 psi	4.8	3.1	Under-damped	2.0	Under-damped
Air Spring 80 psi	5.8	5.9	Under-damped	10.9	Under-damped

Critically Damped System: Q = 0.5

Coil Versus Air Spring Isolator

- Coil design benefit over air spring
 - Reduces shock to same level
 - Reduces vibratory motion after impact
 - Offers passive design (no maintenance)
 - Leads to greater over-the-road stability

Investigating 45 Degree Coil Isolator Configuration

- Compression Configuration
 - Slightly under-damped vertically
 - Slightly over-damped transversely

- 45 degree Compression Roll Configuration
 - May converge vertical and transverse response towards greater overall stability (or balance)

3.9 GHz Cryomodule Over-the-Road Studies

Geophones (in x & y direction) on frame and fixture

ational Linear Collider

DAQ system onboard

Base frame rigidly attached to air ride flat bed

ILC

Over-the-Road Studies

- Characterize vibratory motion in terms of displacement and frequency
- Evaluate isolator design's response to dynamic shock
- o Estimate design transmissibility

Cold Geophone Location Selection for TTF Coldmass Transport

 a) Input from Alessandro Bertolini and Ramila Amirikas (DESY) based on cold measurements on TTF Cryomodule #6

Geophones on quad at DESY

Also, Cryomodule Instrumentation Team input and support

ILC International Linear Collider

Warm Geophone Location Selection for TTF Coldmass Transport

b) Warm points of interest defined by FEA study regarding motion during transport

Mode 10 (21 Hz)

Mode 11 (25 Hz)

Strain Gauge Location Selection for TTF Coldmass Transport

Strain gauges applied along HeGRP at points of interest

Provides: deflection and stress

Future Work

- 3.9 GHz fixture transverse and vertical shock testing of 45 degree coil design
- 3.9 GHz fixture over-the-road studies continue
- Prepare for transport of 1.3 GHz CM coldmass to study dynamic response of movement
- o TTF Cryomodule transport studies
 - Shock
 - Over-the-road

