

1

Helium tank comparison

Nicola Panzeri

INFN – Mi LASA

4/19/07

history - versions

HT Version	Cavity	Tuner	Pad distance	End cones
TTF type	Long	Saclay	750 mm	Old
ILC 1.0	Long/Short	Coaxial	600 mm	Old + "L" adapting ring
ILC 1.3	Long/Short	Coaxial slim	750 mm	Old + strainght adapting ring
ILC 2.0	Long/Short	Coaxial slim	750 mm	New

ILC 1.0 ILC 1.3 ILC 2.0

Ti Grade 1

ASME VIII, div 2, part AM, table ANF-1.4, density = 4500 kg/m^3

• Bellow: spec. no. SB265/UNSR50400

 $f_t = 240 \text{ MPa}; \quad f_{0.2} = 170 \text{ MPa}; \quad \epsilon_t > 24\% \quad S_m = 80 \text{ MPa} @ 20^{\circ}\text{C}; \quad E = 106870 \text{ MPa}$

Ti Grade 2

ASME VIII, div 2, part AM, table ANF-1.4, density = 4500 kg/m^3

•	Vessel:	spec. no. SB265/UNSR50)250	Forged rings:	spec. no. SB381/F2
	$f_t = 3$	45 MPa: $f_{0,2} = 275$ MPa:	$\varepsilon_t > 20\%$	$S_m = 115 \text{ MPa} @ 20^{\circ}\text{C}$	E = 106870 MPa

NbTi

The niobium / titanium ally is not considered by the ASME pressure vessel code. The mechanical characteristics are taken from the literature, while the S_m value is assumed equal to $f_v/(1.5*1.6)$

 $f_t = 550 \text{ MPa}; \qquad f_{0.2} = 480 \text{ MPa}; \qquad \epsilon_t > 30\% \qquad S_m = 200 \text{ MPa} @ 20^\circ\text{C}; \qquad E = 62000 \text{ MPa} \\ \text{density} = 5700 \text{ kg/m}^3$

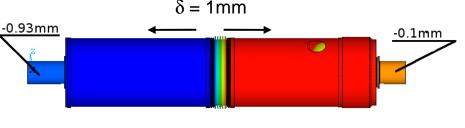
Nb RG

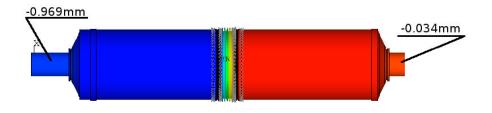
The niobium material is not considered by the ASME pressure vessel code. The mechanical characteristics are taken from the test performed by Myneni and Umezawa [1], while the S_m value is assumed equal to $f_v/(1.5*1.6)$. The heat treatment at 800°C has been taken into account.

 $f_t = 90 \text{ MPa};$ $f_{0.2} = 60 \text{ MPa};$ $\epsilon_t > 50\%$ $S_m = 25 \text{ MPa} @ 20^\circ\text{C};$ E = 102700 MPa; density = 8700 kg/m³

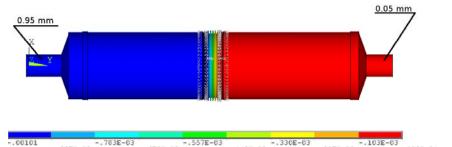
Nb RRR

Like for the RG niobium, the mechanical characteristics are taken from the test performed by Myneni and Umezawa [1], while the S_m value is assumed equal to $f_y/(1.5*1.6)$. The heat treatment at 800°C has been taken into account.


 $f_t = 130 \text{ MPa};$ $f_{0.2} = 40 \text{ MPa};$ $\epsilon_t > 47\%$ $S_m = 16 \text{ MPa} @ 20^\circ\text{C};$ E = 102700 MPa density = 8700 kg/m³

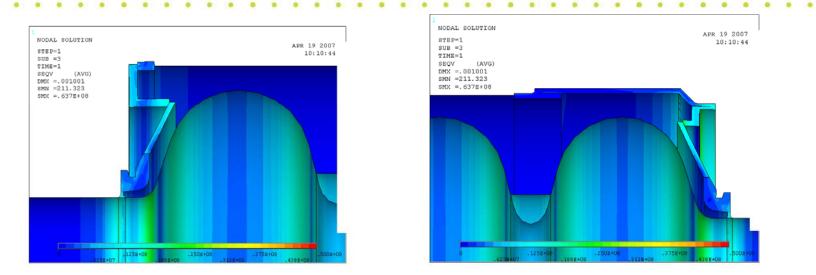

tuning efficiency

The elongation of the cavity due to the tuning, depends from the end-cones stiffness $\delta = 1$ mm

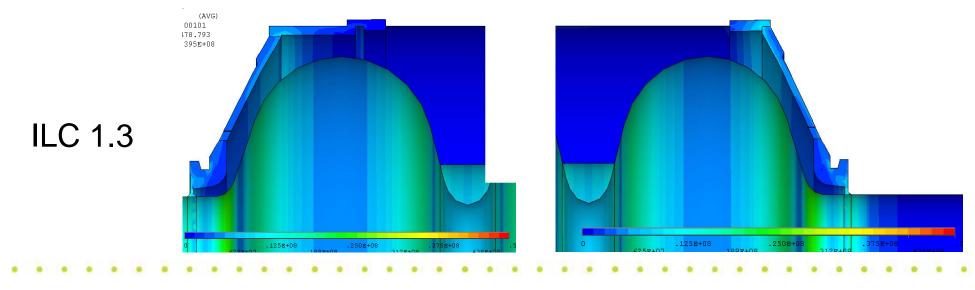


^{-.555}E-03 -.001001 -.778E-03 -.331E-03 -.108E-03 -.889E-03 -.666E-03 -.443E-03 -.220E-03 .317E-05

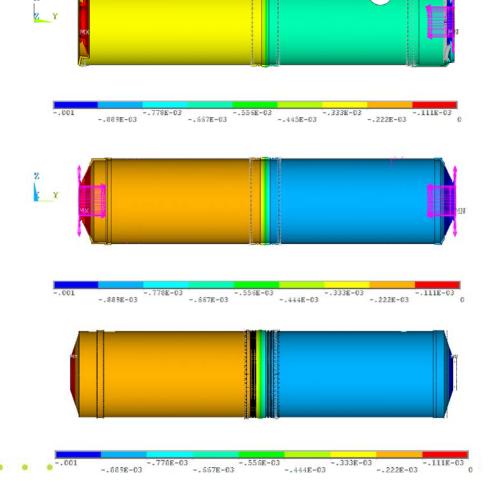
-.783E-03 -.557E-03 -.330E-03 -.103E-03


ILC 1.3: efficiency 93%

ILC 2.0: efficiency 90%


4/19/07

stress during tuning



ILC 1.0

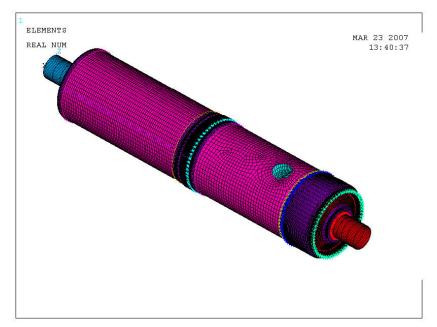
- The helium tank + tuner represents the external constraint to the cavity length
- The piezo+tuner has been replaced by 3D elements with the same stiffness (22.3 kN/mm)

ILC 1.0: K_{ext} = 9700 N/mm

ILC 1.3: K_{ext} = 17500 N/mm

ILC 2.0: K_{ext} = 15300 N/mm

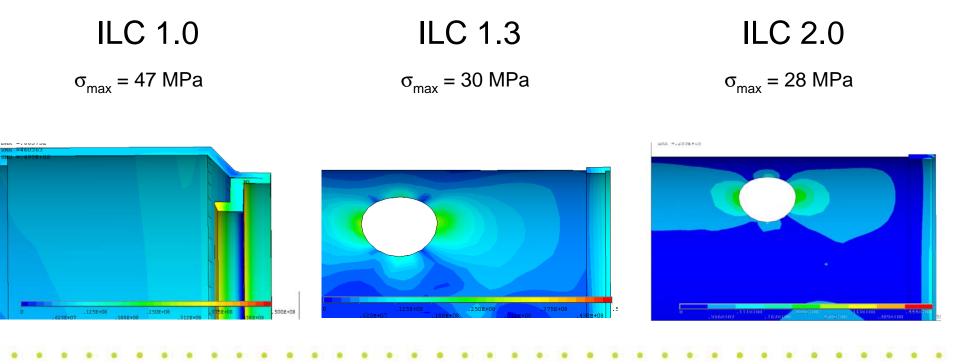
ASME check


- 3D FE model with brick and shell elements
- connections/welds with contact elements

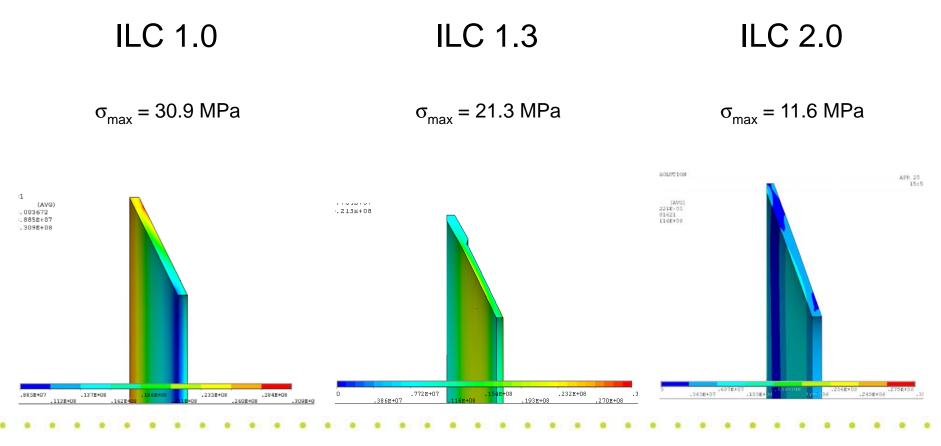
ASME requirements:

- Materials: Ti is considered by ASME, Nb not.
 - for this first check I would use the material characteristics of Nb RRR as obtained by Myneni and Umezawa
- For check at cryogenic temperature, structural properties higher than that at room temperature can not be considered

Load cases:


- From T.P. january presentation:
 - 2bar at warm (only during filling)
 - 4bar at cold (emergency case)
 - 20mar working pressure
- The bellow is tested at 3bar

7


Check of helium tank (Ti Gr2 parts)

- p = 2 bar @ RT
- $S_m = 115$ MPa; joint efficiency = 0.9 \rightarrow max stress = 1.5*.9*115 = 155MPa

• $S_m = 200 \text{ MPa}$; joint efficiency = 0.9 \rightarrow max stress = 1.5*.9*200 = 270MPa

