Compact GLD

August 2/July 30, 2007
Y. Sugimoto
KEK

Motivation

- GLD and LDC will write a common Lol
- The detector design should have common parameters
- Modified design of GLD with the central values for B and R_{CAL} between original GLD and LDC is made
- B=(3+4)/2=3.5 T
- $R_{CAL}=(2.1+1.6)/2=1.85 \text{ m}$

Original GLD

Compact GLD - GLDc

Parameters (1)

			GLD	GLDc
Iron Yoke	Barrel	Rout	7.2 m	6.9 m
		Rin	4.5 m	4.1 m
		Weight	6090 t	5080 t
	E.C.	Zin	4.2/4.5 m	3.7/3.95 m
		Zout	7.5 m	6.9 m
		Weight	3260 t / side	3050 t / side
Solenoid	В		3 T	3.5 T
	R		4 m	3.6 m
	Z		4 m	3.6 m
	E		1.6 GJ	1.7 GJ
Stray field @Z=10m			70 G	120 G

Parameters (2)

			GLD	GLDc
TPC	Rin		0.45 m	0.45 m
	Rout		2.0 m	1.75 m
	Zmax		2.3 m	2.0 m
Barrel CAL	ECAL	Rin	2.1 m	1.85 m
		Rout	2.3 m	2.05 m
		BRin ²	13.2 Tm ²	12.0 Tm ²
	HCAL	Rout	3.5 m	3.15 m
		Thickness	1.2 m	1.1 m
EC CAL	ECAL	Zmin	2.8 m	2.4 m
		Zmax	3.0 m	2.6 m
	HCAL	Zmax	4.2 m	3.7 m
		Thickness	1.2 m	1.1 m

Exp hall

FD Support / Shield block

Shield

Endcap opening

- Remove upper part of A by crane
- Remove lower part of A by air pad
- Open the endcap

Push-pull

- Disconnect beam pipe at Z~10.5m
- Slide C vertically
- Slide the platform

B-field

Impact on MDI

- Surface assembly
 - Barrel part (Fe return yoke + Solenoid) is lighter than 6000 ton →
 Separation into 3 is possible for CMS style assembly
 - Heaviest component to be lifted is upper halves of Fe+concrete shield
 ~180 ton → Crane capacity: 400 ton → 200 ton
- Push-pull scheme
 - |Z| of the detector is reduced to 6.9 m and only ΔZ =1.6m is necessary to open the endcap
 - BDS cut at |Z|~10.5 m (i.e. after QF1) makes everything easy and quick
 - 22x21 m² platform
- Stray B-field
 - Stray field at Z=10 m increases from 70G to 120G, but still can be reduced below 50 Gauss by inexpensive compensation coil and iron shield around beam line
- L*
 - L* of 4.2 m would be adequate