• Side • Tracking LOI Preparations

- LOI will describe SiD tracker design, R&D status, and simulated performance
- Many of the technical / hardware R&D efforts will be in incomplete on the time scale of the LOI
 - We should be able to show some preliminary results given state of detector and readout prototype efforts, other R&D in progress
 - Likely that there will be some significant holes
 - Vibration / Lorentz forces was an issue raised at the tracking review need some good ideas on how to make progress on this topic given the largely unknown forces / torques that will be applied to the mechanical structure
- On the other hand, we should be able to put forward a detailed and fairly complete design with extensive simulation studies that demonstrate the SiD tracker is robust and capable of meeting the needs of the ILC physics program
 - Will focus on these issues today

• SiD • Design and Simulation

- Ideally, the design optimization is an iterative process
 - Start from a baseline design and understand performance of baseline
 - Perform variations on the baseline to establish "performance derivatives"
 - Establish new baseline design with improved performance
 - Repeat until you achieve convergence

This only works if:

- Your performance metrics are relevant to the ILC physics program
 - Danger #1 optimize for an irrelevant physics benchmark
 - Danger #2 fail to optimize for the actual requirements needed at the ILC
- Your simulation tools are sensitive to the design variations that will ultimately improve performance
 - Danger #3 the simulation tools, not the detector design, limit the measured performance
 - Danger #4 the level of simulation modeling is too coarse and misses important effects
- Your backgrounds and hardware performance requirements are achieved
 - Danger #5 backgrounds will be worse than expected
 - Danger #6 hardware problems will not allow simulated performance to be achieved

Important to retain / demonstrate "performance contingency"

• SD • Tracking Simulation Efforts I

Focus is currently on developing simulation tools

- MC simulation of tracker
 - Cylindrical barrel and disk geometry complete
 - Planar detector geometry (McCormick / Nelson)
- Detailed simulation of tracker hits
 - Complete simulation of charge deposition in strips / pixels, readout, and clustering of strip hits to form "tracker hits" (Nelson)
 - Have also in hand a tracker hit cheater that simulates clustering and resolution effects (Nelson / Partridge)
 - Define extensions to existing org.lcsim framework needed for tracking (Kutschke + others)
- Track finding algorithms
 - Vertex seeded tracking (Stevens / Partridge)
 - Conformal mapping algorithm (Baker / Graf)
 - Stand alone outer tracking (Deaconu / Nelson)
 - Calorimeter seeded tracking (Onoprienko)

• SiD• Tracking Simulation Efforts II

- Track fitting algorithms
 - Weight matrix (Sinev)
 - Kalman filter (Baker / Graf)
 - Fast helix finder for track finding (Stevens / Partridge)
- Tracking performance studies
 - Multi-algorithm track finding (Rice / Schumm)
 - Forward tracking studies (Francisco / Wenzel)
 - Tracking performance metrics (Meyer / Schumm)

• SD • Tracking Performance Metrics

Traditional metrics

- Efficiency, coverage, resolution, fake rate
- Particularly useful for finding weaknesses in design (e.g. low efficiency for forward tracks)
- More difficult is developing metrics that measure physics performance
 - Physics will apply a non-uniform weighting to the traditional metrics
 - Inefficiency at high momentum more critical than at low momentum
 - Weighting may depend on physics
 - For example, leptonic ZH heavily weights momentum resolution
 - What is needed for good PFA performance?
 - Impact of long-lived secondaries
 - Impact of inefficiency and fakes
 - Impact of material
 - Probably should develop some physics weighted benchmarks
 - Weight efficiency, fake rates, by momentum?
 - How do we quantify forward tracking performance?