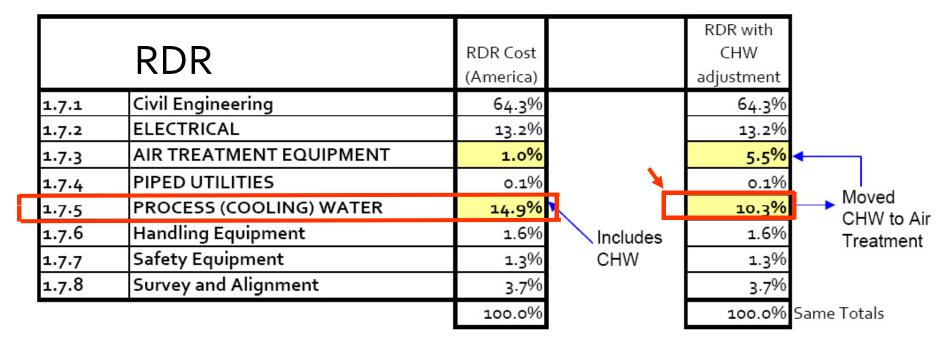
CFS EDR KICK OFF MEETING Process Water

August 23, 2007

Emil Huedem, FNAL CFS


CFS Process Water-Outline

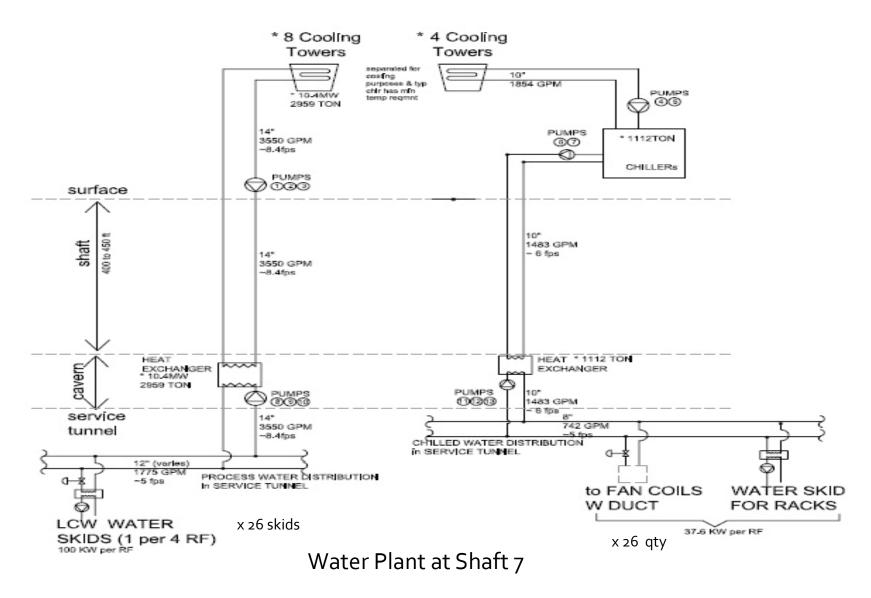
- The Past (RDR Stuff): What's included, wbs, timeline, Concept & Basis, Cost Approach
- The Future (EDR stuff): Approach, Optimization items & questions

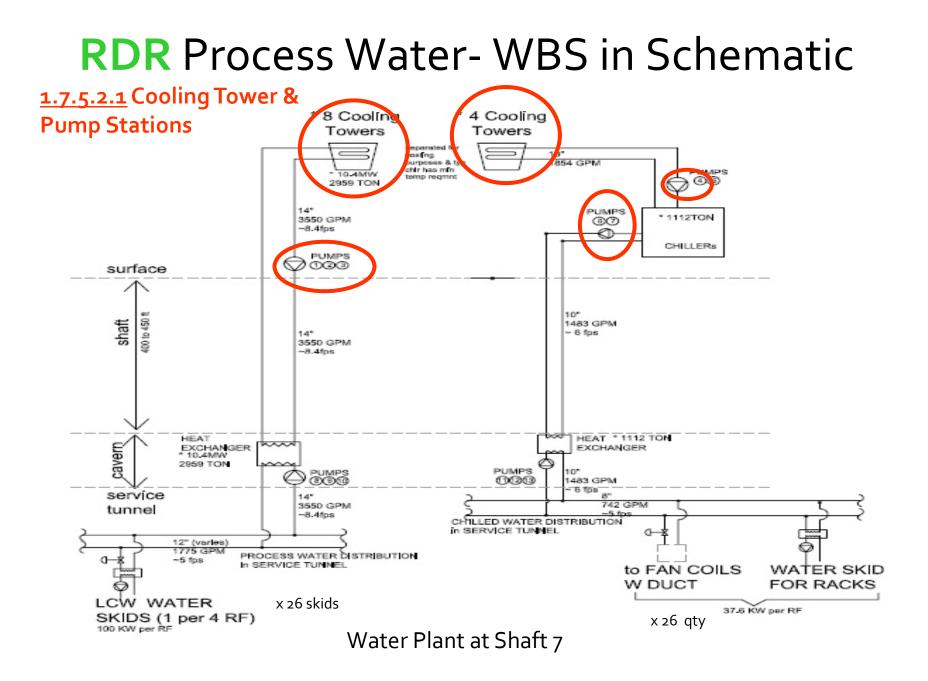
RDR Process Water WBS

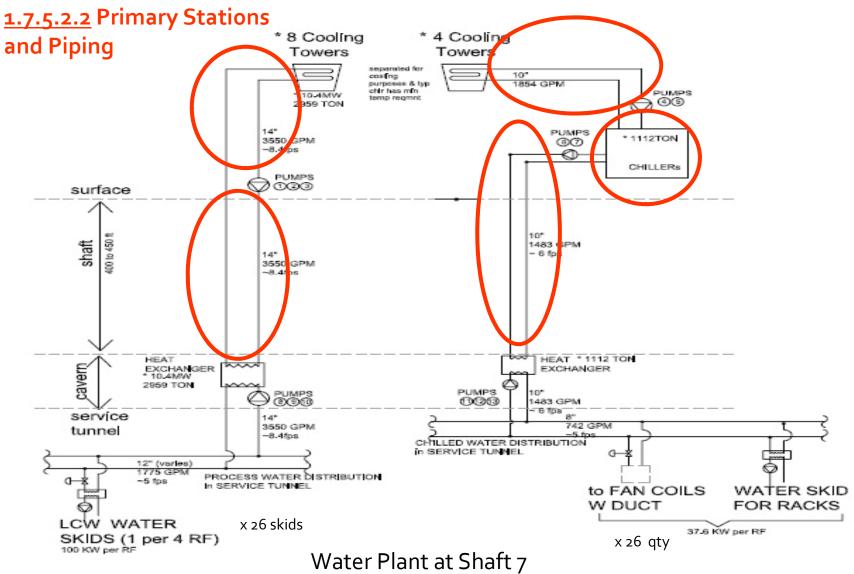
• Process Water is about 15 or 10% of CFS (when

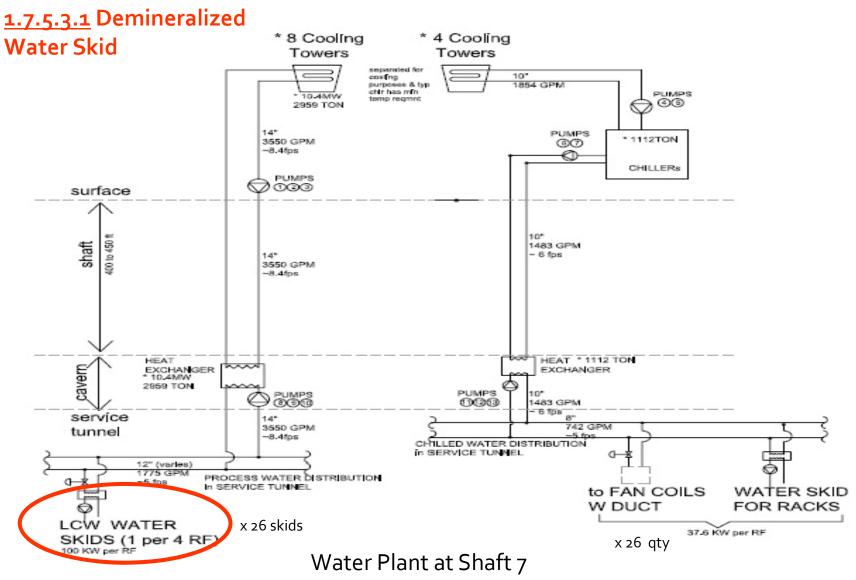
chilled water move to air treatment-)

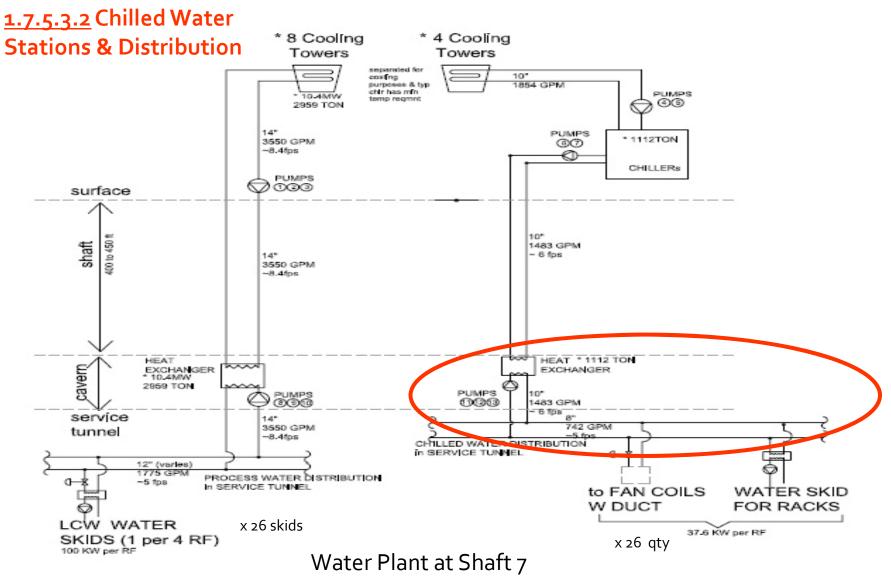
RDR Process Water WBS

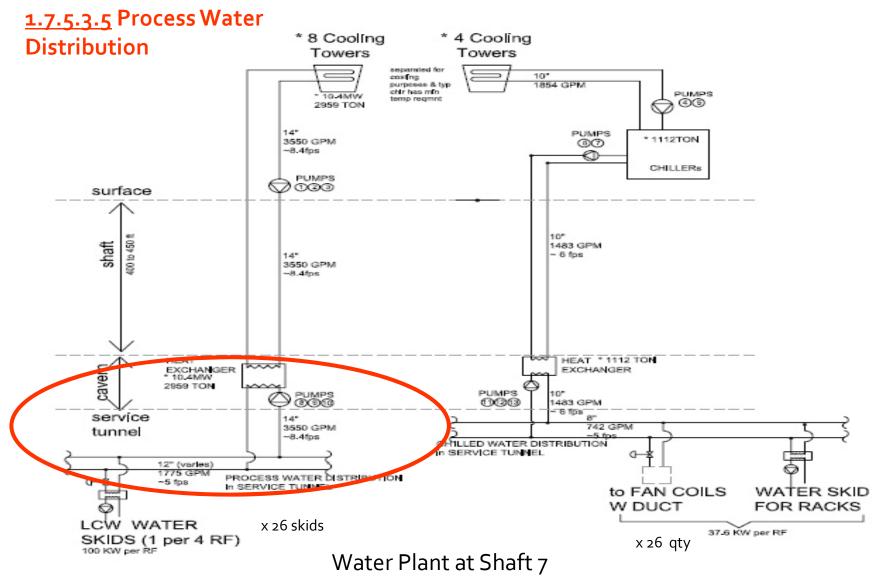

1.7.5 Process Cooling Water

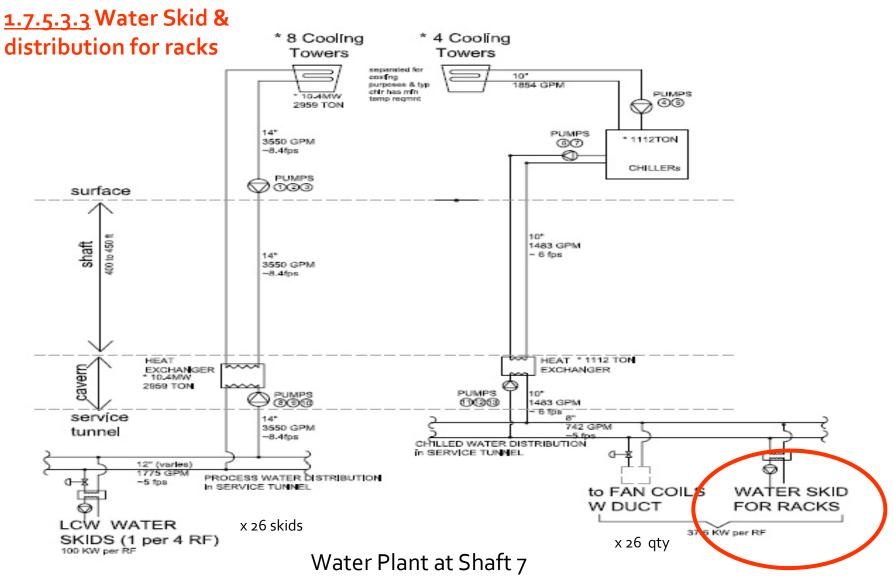

1.7.5.1.1	Engineering, Study Work & Documentation
1.7.5.2.1	Cooling Towers & Pumping Stations
1.7.5.2.2	Primary Stations and Piping
1.7.5.3.1	Demineralized Water Skid
1.7.5.3.2	Chilled Water Stations and Distribution Piping
1.7.5.3.3	Water Stations and Distribution Piping
1.7.5.3.4	Compressed Air
1.7.5.3.5	Process Water Distribution


RDR Process Water subWBS


oling Towers & Pumping Stations poling Towers for Process Water poling Towers for Chilled Water power Pump & accessories for Process Water power Pump & accessories for Chilled Water hilled Water Pump pontrols mary Stations and Piping hillers power Piping for Process Water (surface) power Piping for Process Water (surface) power Piping for Process Water (surface) power Piping for Process Water (shaft) hilled Water Piping (surface) hilled Water Piping (surface) hilled Water Piping (shaft) mineralized Water Skid emineralized Skids
boling Towers for Process Water boling Towers for Chilled Water ower Pump & accessories for Process Water ower Pump & accessories for Chilled Water hilled Water Pump bontrols mary Stations and Piping hillers ower Piping for Process Water (surface) ower Piping for Chilled Water (surface) ower Piping for Process Water (surface) ower Piping for Process Water (shaft) hilled Water Piping (surface) hilled Water Piping (surface) hilled Water Piping (shaft) mineralized Water Skid emineralized Skids
booling Towers for Chilled Water ower Pump & accessories for Process Water ower Pump & accessories for Chilled Water hilled Water Pump ontrols mary Stations and Piping hillers ower Piping for Process Water (surface) ower Piping for Process Water (surface) ower Piping for Process Water (surface) ower Piping for Process Water (shaft) hilled Water Piping (surface) hilled Water Piping (shaft) mineralized Water Skid emineralized Skids
ower Pump & accessories for Process Water ower Pump & accessories for Chilled Water hilled Water Pump ontrols mary Stations and Piping hillers ower Piping for Process Water (surface) ower Piping for Chilled Water (surface) ower Piping for Process Water (shaft) hilled Water Piping (surface) hilled Water Piping (surface) hilled Water Piping (shaft) mineralized Water Skid emineralized Skids
ower Pump & accessories for Chilled Water hilled Water Pump ontrols mary Stations and Piping hillers ower Piping for Process Water (surface) ower Piping for Chilled Water (surface) ower Piping for Process Water (shaft) hilled Water Piping (surface) hilled Water Piping (surface) hilled Water Piping (shaft) mineralized Water Skid emineralized Skids
hilled Water Pump ontrols mary Stations and Piping hillers ower Piping for Process Water (surface) ower Piping for Chilled Water (surface) ower Piping for Process Water (shaft) hilled Water Piping (surface) hilled Water Piping (shaft) mineralized Water Skid emineralized Skids
mary Stations and Piping hillers ower Piping for Process Water (surface) ower Piping for Chilled Water (surface) ower Piping for Process Water (shaft) hilled Water Piping (surface) hilled Water Piping (shaft) mineralized Water Skid emineralized Skids
mary Stations and Piping hillers ower Piping for Process Water (surface) ower Piping for Chilled Water (surface) ower Piping for Process Water (shaft) hilled Water Piping (surface) hilled Water Piping (shaft) mineralized Water Skid emineralized Skids
hillers ower Piping for Process Water (surface) ower Piping for Chilled Water (surface) ower Piping for Process Water (shaft) hilled Water Piping (surface) hilled Water Piping (shaft) mineralized Water Skid emineralized Skids
ower Piping for Process Water (surface) ower Piping for Chilled Water (surface) ower Piping for Process Water (shaft) hilled Water Piping (surface) hilled Water Piping (shaft) mineralized Water Skid emineralized Skids
ower Piping for Chilled Water (surface) ower Piping for Process Water (shaft) hilled Water Piping (surface) hilled Water Piping (shaft) mineralized Water Skid emineralized Skids
ower Piping for Process Water (shaft) hilled Water Piping (surface) hilled Water Piping (shaft) mineralized Water Skid emineralized Skids
hilled Water Piping (surface) hilled Water Piping (shaft) mineralized Water Skid emineralized Skids
hilled Water Piping (shaft) mineralized Water Skid emineralized Skids
mineralized Water Skid emineralized Skids
emineralized Skids
illed Water Stations and Distribution Piping
eat Exchangers (cavern)
istribution Pumps (cavern)
ping (cavern)
ping (tunnel)
ping Connections to End Equipment
ater Stations and Distribution Piping
mpressed Air
ocess Water Distribution
eat Exchangers (cavern)
istribution Pumps (cavern)
ping (cavern)
ping (tunnel) ping Connections to End Equipment


RDR Process Water Schematic

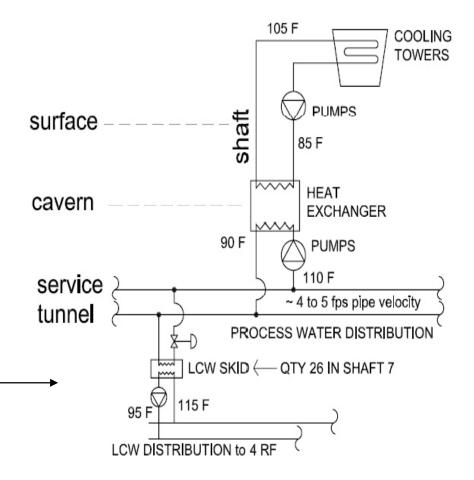




RDR Process Water- WBS

• Process Water Cost Drivers (aside from the high thermal load)

Process (with Chilled	l Water)	Process Water (with Cl Transferred to Air Tr	
Chilled Water Related	28%	Chilled Water Related	0%
		LCW Skid & LCW Piping	
LCW Skid & LCW Piping		distribution &	
distribution & accessories	38%	accessories	55%
Process Piping	12%	Process Piping	17%


What's included

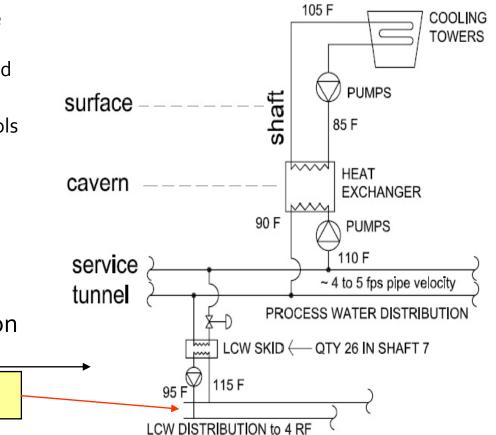
- Cooling Towers for Process Water/LCW (the chw is separate system)
- Pumps, surface and underground
- Heat Exchanger, LCW skid
- Piping, insulation, valves, controls and other process water accessories

What was NOT included

• Cooling tower system for Cryo

Simplified schematic based on Main Linac RF @ Shaft 7

What's included

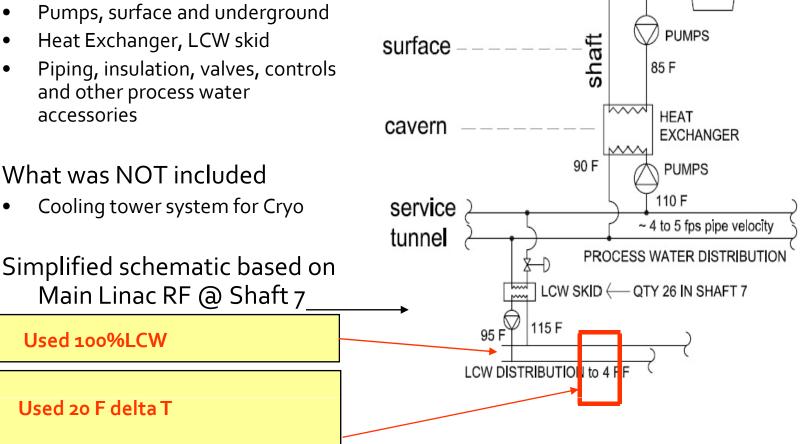

- Cooling Towers for Process Water/LCW (the chw is separate system)
- Pumps, surface and underground
- Heat Exchanger, LCW skid
- Piping, insulation, valves, controls and other process water accessories

What was NOT included

• Cooling tower system for Cryo

Simplified schematic based on Main Linac RF @ Shaft 7____

Used 100%LCW



What's included

- Cooling Towers for Process • Water/LCW (the chw is separate system
- Pumps, surface and underground •
- Heat Exchanger, LCW skid .
- Piping, insulation, valves, controls • and other process water accessories

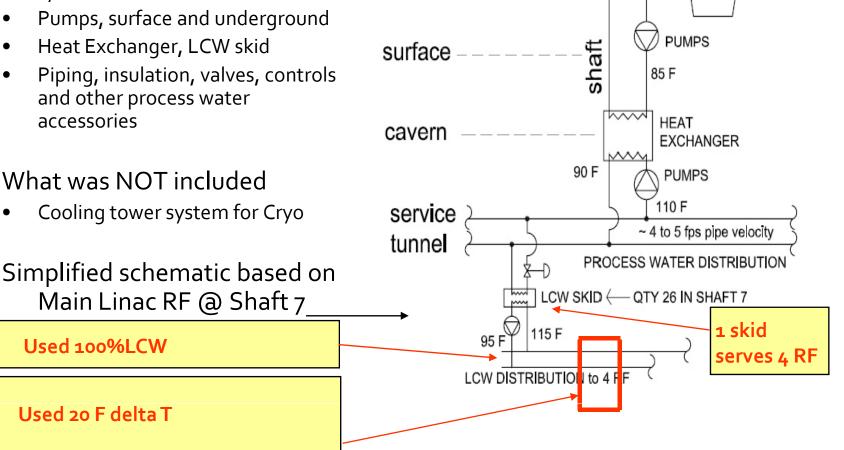
What was NOT included

Cooling tower system for Cryo

105 F

COOLING TOWERS

What's included

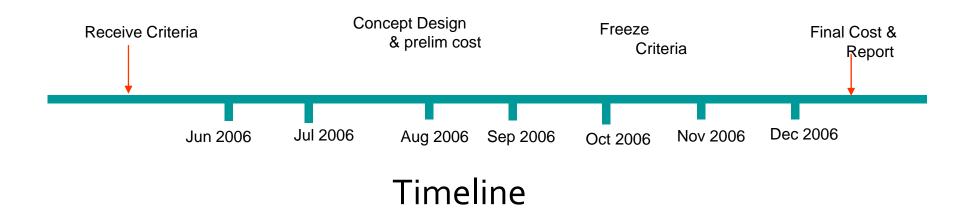

- **Cooling Towers for Process** • Water/LCW (the chw is separate system
- Pumps, surface and underground •
- Heat Exchanger, LCW skid
- Piping, insulation, valves, controls • and other process water accessories

What was NOT included

Used 100%LCW

Used 20 F delta T

Cooling tower system for Cryo

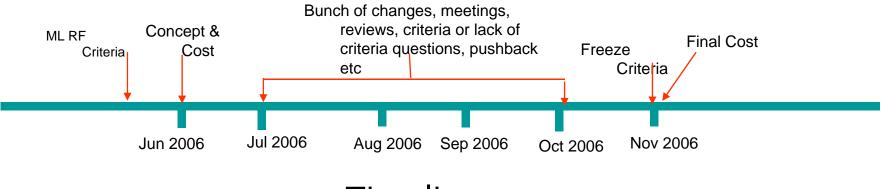

105 F

COOLING TOWERS

RDR Process Water – Approach

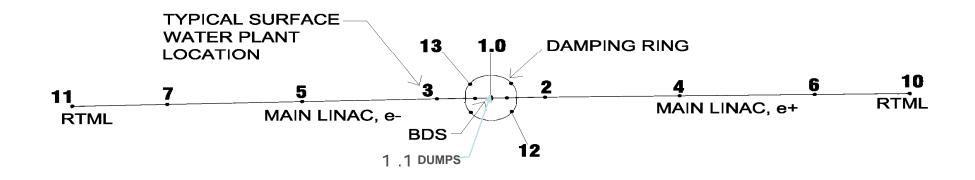
Basic Approach

- Receive Criteria/requirement
- Design concept
- Cost & Report

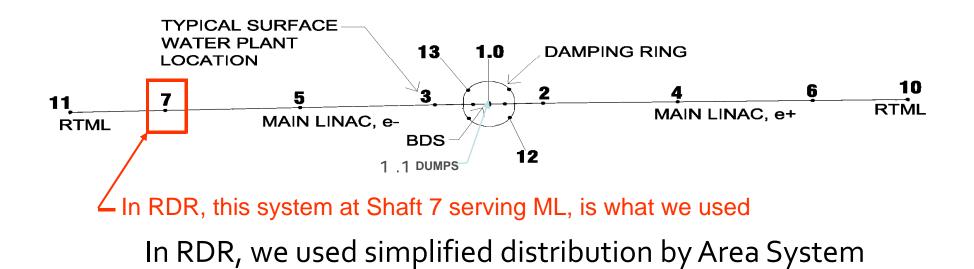

RDR Process Water- Approach

Basic Approach

- Receive Criteria/requirement
- Design concept
- Cost & Report


<u>Actual</u>

- ML RF info, the rest of area systems are just totals
- ML RF Concept for 1 shaft
- Concept and cost for other areas (except <u>surface distribution to BDS</u> <u>dumps</u>) scaled from ML RF at Shaft 7


Timeline

RDR Surface Water Plant locations

In RDR, we used simplified distribution by Area System

RDR Surface Water Plant locations

RDR Process Water: Cost Basis

- Used R.S.Means Cost Book for typical HVAC items such as piping, insulation etc
- Used historical data similar project where available
- Used vendors budgetary quote for large items not in R.S.Means. Such as Cooling Towers, Heat Exchangers, Pumps, Rack Skids, LCW Skids
- Used rule of thumb cost per size (example Chiller)

RDR Process Water: Heat Load Basis- ML RF

Snapshot Average Average Heat Supply Total Average Heat Supply Terms Acceptable Heat Fraction Poil Maxim m Typical Acceptable Heat Fraction Poil Acceptable Heat Fraction Poil Poil Maxim m Typical Acceptable Heat Fraction Poil Poil<	<u>Nov 27b 2006</u>					-						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		T LOA	AD (a	II LCW			keith Jobe load to					
RF Charging Supply 34.5 Kv 4.0 4.0 2.8 40 40 18 8 10 0 0.3 1. Switching power supply 4kV 7.5 7.5 7.5 4.5 35 14 13 8 10 0 0.4 3. Switching power supply 4kV 7.5 7.5 4.5 35 14 13 8 10 0 0.4 3. Modulator 7.5 7.5 4.5 28.82 0 0 0.4 3. Pulse Transformer 1.0 1.0 0.7 0 0 0 0.3 0 Klystron Socket Tank / Gun 1.0 1.0 0.8 0	- Nov 27 2006	Heat Load	e Heat Load	Load to Water	Temp (variatio	Tempe rature (C	m Allowab le Pressur	Typical (water) pressure	e Temp Variation	Heat Load to Water	Power fractio n to Tunnel Air (o-	Power to
Referring into sopping 34.5, NV A.C. A.C. A.C. A.O. A.O. <td>RF Components</td> <td></td>	RF Components											
SokW No No <		4.0	4.0	2.8	40	40	18	8	10	o	0.3	1.2
Modulator1.01.00.728.82000.43Pulse Transformer1.01.00.7 $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$	3 , 1	7.5	7.5	4-5	35	14	13	8	10	0	0.4	3.0
Klystron Socket Tank / Gun 1.0 1.0 0.8 0 0 0 0.2 0 Klystron Socket Tank / Gun 1.0 1.0 0.8 0 0 0.2 0 Klystron Focusing Coil (Soler 4.0 3.6 0 0 0 0.1 0 Klystron Collector 4.0 3.6 45.8 *35> 2 0 0 0.0 1.0 Klystron Windows 58.9 47.2 0.0 *35> 5 5 + - 2.5 C 0 0.0 1.0 Relay Racks (Instrument Racks 10.0 10.0 0.0 N/A N/A N/A N/A N/A 1.5 -0.2 -1 Waveguide 3.9 3.9 3.5 0 + - 2.5 C 0 0.1 0 Total Heat load to Dirty Water (per RF) 100 100 0 11.50 26	Modulator	7.5	7.5	4.5			28.82			о	0.4	3.0
Klystron Socket Tank / GunII <td>Pulse Transformer</td> <td>1.0</td> <td>1.0</td> <td>0.7</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>о</td> <td>0.3</td> <td>0.3</td>	Pulse Transformer	1.0	1.0	0.7						о	0.3	0.3
Klystron Collector 45.8 $*35>$ a <	Klystron Socket Tank / Gun	1.0	1.0	o.8						о	0.2	0.2
Klystron Body Klystron Windows58.947.20.0 $*_{35}>$ 10.05 $+ - 2.5 C$ 00.00.01.0Relay Racks (Instrument Racks10.010.00.0 N/A <	Klystron Focusing Coil (Soler	4.0	4.0	3.6						о	0.1	0.4
Klystron Body Klystron Windows58.947.20.0 $*_{35}$ 005 $+ - 2.5 C$ 00.01.0Relay Racks (Instrument Racks)10.010.0 $*_{35}$ 001001010111	Klystron Collector			45.8	*35>			2		о		
Relay Racks (Instrument Racks10.010.010.0N/AN/AN/AN/AN/ANone11.5-0.2-1Circulators, Attenuators & Dun42.334.032.3CCC42.5CO0.11Waveguide3.93.93.5CCCCCC00.100Total RFVV	Klystron Body	58.9	47.2					5	+ - 2.5 C	о	0.0	1.4
Relay Racks (Instrument Racks o o.o N/A N/A N/A N/A None o<	Klystron Windows			0.0	*35>			1		0		
Waveguide 3.9 3.9 3.5 Image: style	Relay Racks (Instrument Racks	10.0	10.0	0.0	N/A	N/A	N/A	N/A	None	11.5	-0.2	-1.5
Waveguide SS SS SS F SS F Total RF 100 11.50 26 Total Heat load to Dirty Water (per RF)	Circulators, Attenuators & Dun	42.3	34.0	32.3					+ - 2.5 C	о	0.1	1.7
Total Heat load to Dirty Water (per RF)		3-9	3-9	3-5					+ - 2.5 C	о	0.1	0.4
	Total RF		100						11.50		26.07	
	Total Heat load to Dirty	v Wat	er (pe	r RF)								
Heat load to Chilled water (per RF) 37.6 cooled by chilled water				cooled	by chi	lled wa	ter					
			100.0 cooled by low conductivity water									

RDR Process Water: Heat Load Basis- ML RF-missing Info

<u>Nov 27b 2006</u>													
WATER AND AIR HEA	TLOA	AD (al	ll LCW) and g	9-8-9	ML							
Snapshot				То	to Chilled Water	keith Jobe load to air Nov 22 06							
Nov 27 2006 Components RF Components	Total Heat Load (KW)	Averag e Heat Load (KW)		Supply Temp (variatio n) (C)	rature	Maximu m Allowab le Pressur e (Bar)		Acceptabl e Temp Variation delta C	Heat Load to Water (KW)	Power fractio n to Tunnel Air (o- 1)	Power to Tunnel Air (KW)		
RF Components													
RF Charging Supply 34.5 Kv AC-8KV DC	4.0	4.0	2.8	40	40	18	8	10	о	0.3	1.2		
Switching power supply 4kV 5okW	7.5	7.5	4-5	35	14	13	8	10	0	0.4	3.0		
Modulator	7-5	7-5	4.5			28.82			о	0.4	3.0		
Pulse Transformer	1.0	1.0	0.7						о	0.3	0.3		
Klystron Socket Tank / Gun	1.0	1.0	o.8						о	0.2	0.2		
Klystron Focusing Coil (Soler	4.0	4.0	3.6						о	0.1	0.4		
Klystron Collector Klystron Body	58.9	47.2	45.8 0.0	*35> *35>			2	+ - 2.5 C	0 0	0.0	1.4		
Klystron Windows			0.0	*35>			1		0				
Relay Racks (Instrument Racks	10.0	10.0	0.0	N/A	N/A	N/A	N/A	None	11.5	-0.2	-1.5		
Circulators, Attenuators & Dun	42.3	34.0	32.3					+ 2.5 C	о	0.1	1.7		
Waveguide	3-9	3-9	3-5		\mathbf{V}			+ - 215 C	о	0.1	0.4		
Total RF	100		V		ooro ind		11.50		26.07				
Total Heat load (per RF) Heat load to Chilled water (per RF) 37.6					Need more info								
Heat load to Chilled water Heat load to LCW (per RF)	cooled by low conductivity water												
Teat load to LOW (per KF)	Review delta P												

RDR Process Water: Heat Load Basis- Total Loads

Snapshot Nov 27 2006

Area System	LCW	Chilled Water	Total
SOURCES e-	2.880	1.420	4.300
SOURCES e+	17.480	5.330	22.810
DR e-	8.838	0.924	9.762
DR e+	8.838	0.924	9.762
RTML	9.254	1.335	10.589
MAIN LINAC	56.000	21.056	77.056
BDS	10.290	0.982	11.272
DUMPS	36.000	0.000	36.000
	149.58	31.971	182

RDR Process Water Summary

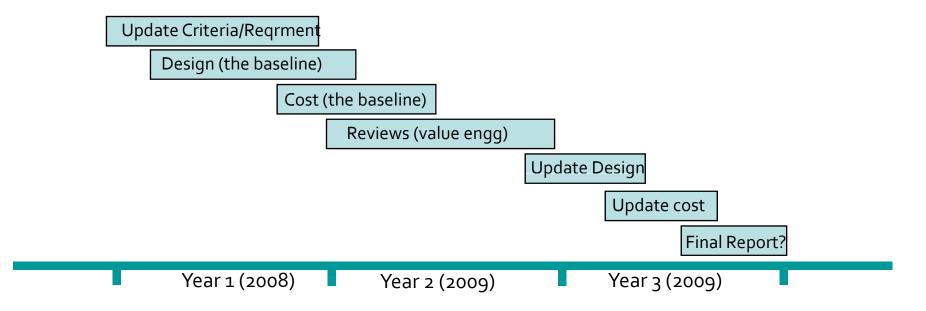
- Process Water Components in RDR were
 - Process Water and Low Conductivity Water & related accessories
 - Chilled water System (*this will be transferred to Air Treatment Systems, in EDR*)
- Process Water design is dependent on the heat load info received from area systems. Concept, scope and cost was based on <u>whatever</u> information we have as of Nov 2006.
- In RDR, we conceptualized and costed one water plant (at shaft 7) and everything else was scaled from that, based on each area's heat load. There were no detailed distribution concept for the other area system, except for the process water distribution to BDS dump, which was a near surface piping distribution toward individual utility shaft to each water dump cavern
- LCW is still immature in design. Used 100% LCW for RF components, as basis (instead of pushback version of 1%LCW/99% non-lcw water), because there was no concurrence as of Nov 2006 from various users to use the pushback-non-lcw, and the preliminary savings was not large.
- Cost/power reduction items were initiated, (even with loose and incomplete criteria at that time), the system <u>design is still immature, with a lack of detailed specifications and</u> requirements. Value engineering has been deferred.

EDR Process Water <u>Summary</u>

- Process Water Components in EDR is
 - Process Water and Low Conductivity Water and related accessories
- The <u>snapshot</u> info/criteria we had on Nov 2006 will be updated. Hopefully there will be a more complete updated criteria <u>very early</u>.
- In EDR, we will conceptualize and cost plants for all area systems instead of scaling approach used in RDR
- The use of LCW (& all other potential optimization items) will have to be revisited. We assumed though, LCW will be the starting point of the baseline and the variation (LCW vs Non-Lcw) will be decided by "someone" before they passed it on to CFS, maybe after the fight between the pros and con group on this issue (or "value engg").

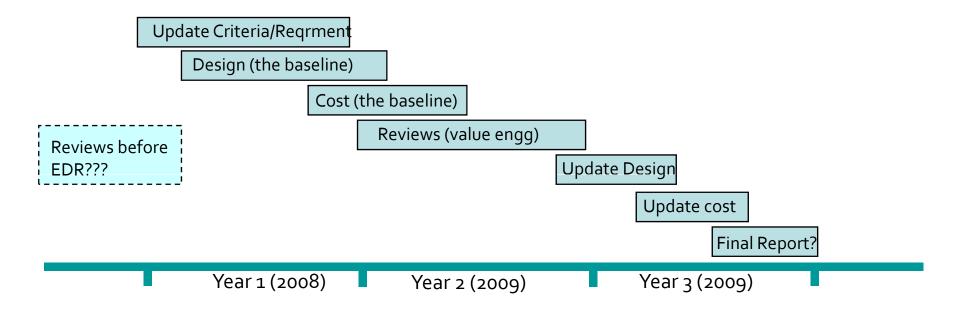
• Receive/Update criteria & requirement

- Receive/Update criteria & requirement
- Design systems (for baseline)

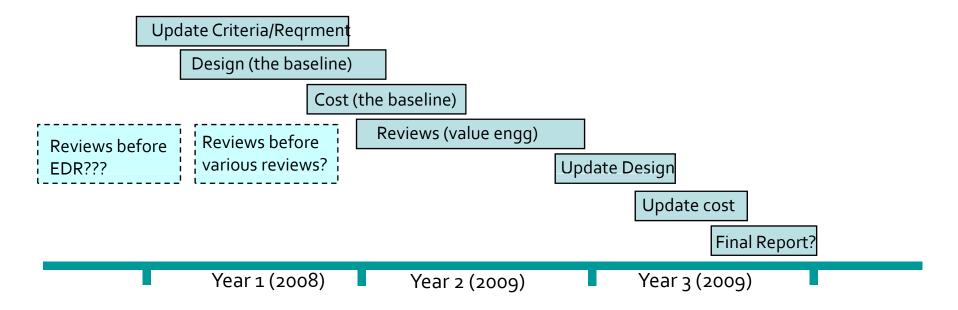

- Receive/Update criteria & requirement
- Design systems (for baseline)
- Cost the design

- Receive/Update criteria & requirement
- Design systems (for baseline)
- Cost the design
- Reviews (value engg etc)

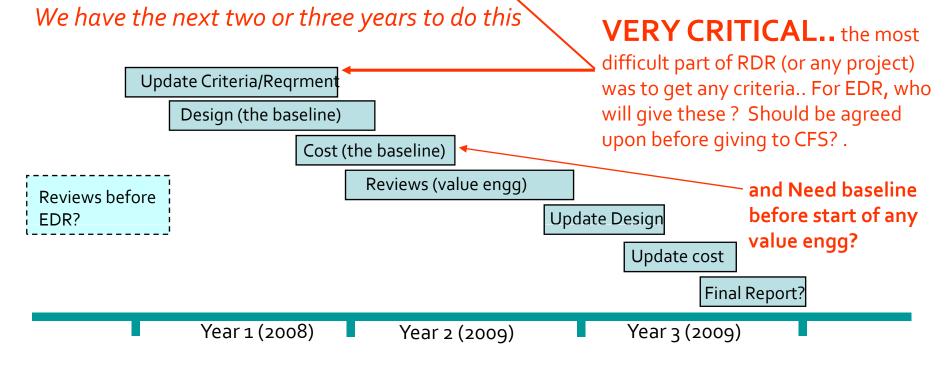
- Receive/Update criteria & requirement
- Design systems (for baseline)
- Cost the design
- Reviews (value engg etc)
 - Update criteria
 - Update baseline
 - Update cost


- Receive/Update criteria & requirement
- Design systems (for baseline)
- Cost the design
- Reviews (value engg etc) & updated design/cost

We have the next two or three years to do this


- Receive/Update criteria & requirement
- Design systems (for baseline)
- Cost the design
- Reviews (value engg etc) & updated design/cost

We have the next two or three years to do this



- Receive/Update criteria & requirement
- Design systems (for baseline)
- Cost the design
- Reviews (value engg etc) & updated design/cost

We have the next two or three years to do this

- Receive/Update criteria & requirement
- Design systems (for baseline)
- Cost the design
- Reviews (value engg etc) & updated design/cost

EDR Process Water - <u>EDR Goal & deliverables?</u>

<u>Goals</u>

- Work with "??area systems? integration group???" to get criteria updated and establish/update a preliminary conceptual design baseline
- Provide <u>bottoms up</u> cost estimate (not <u>scaled</u>)
- Provide various option studies to support the value engineering effort

Deliverables

- Conceptual design with Interfaces established
- Cost Estimate
- Other reports or other design work needed for the EDR

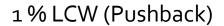
...need concurrence

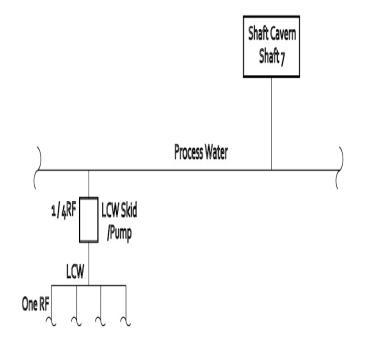
EDR Process Water — <u>Some Items for value engg/optimization</u> <u>Some of the items initially discussed & considered during RDR. Some can</u>

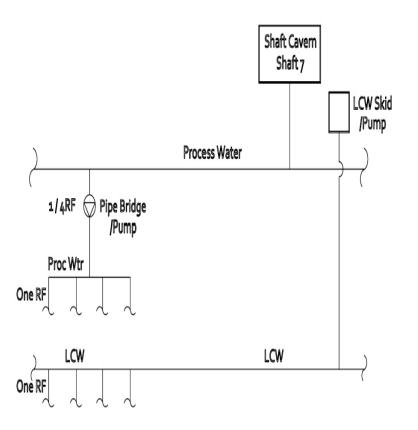
- be revisited during EDR
- Reduction of Thermal Load
- Make <u>all</u> chiller aircooled
 - End up with combination of water cooled for large chiller and aircooled for smaller chiller (considered in cost)
- Reduce LCW Skids
 - From 1 skid per rf, 1 skid per 2 rf to 1 skid per 4 rf
- Totally Remove Chilled Water
 - Racks still need cooler water
- Reduce Chilled Water Usage
- Cooler Supply temperature
- Cost savings due to Industrialization of Lcw Skids
- Piping Materials, why stainless, why not PVC?
- Approach HX temperature, closer approach vs HX cost
- Size main pipe in tunnel at Lower velocities
- Minimize power usage
- Eliminate HX and Pump in cavern
 - Was looked into, but was not a cost driver, and will create high pressure water system in tunnel
- Use one large LCW HX distribution from each cavern shaft
- Use of Non-LCW water/ Reduce LCW
- Increase Delta T

History and description of these items are available on CFS companion document...

LCW vs Non-LCW (History)

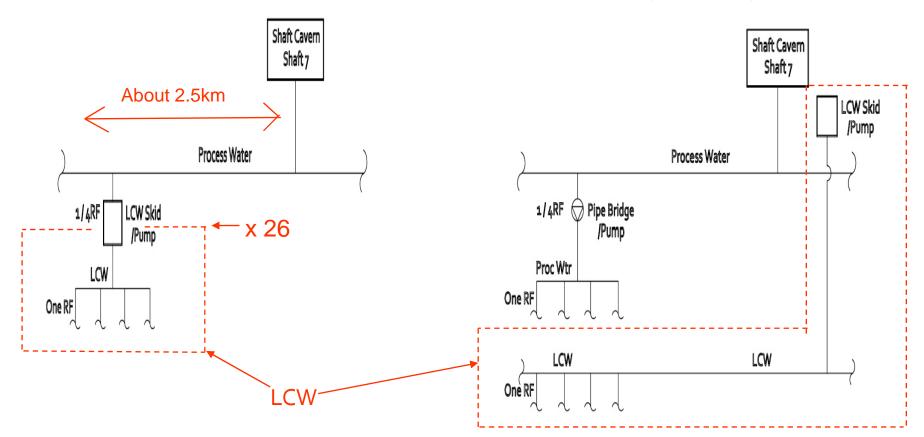

- Around Nov 2006, there was a push of minimizing usage of LCW in ML RF system (pushback), this lead to a criteria that resulted to 1%LCWand 99% Non-LCW in ML RF heat table, that was given to CFS as criteria to be used, even though there were a number of people who were opposed to it.
- Just a few days before the deadline for the cost (Dec 4), we did a very quick cost evaluation but eventually decided on using 100% LCW model as the cost basis for RDR (*see next few slides for reasons*)
- Can be revisited during EDR value engg, when LCW design is mature, and IF the pro/cons amongst users (not cfs) is resolved.

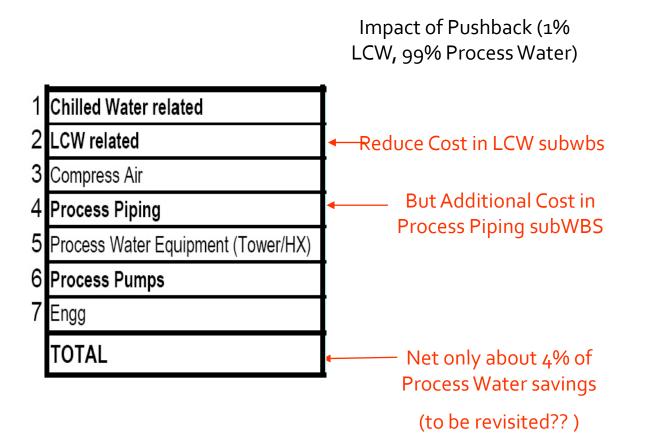

NOV 27a 2006


WATER AND AIR HEAT LOAD (Load Pushback Version) and 9-8-9 ML

MAIN LINAC - ELECTRON & POSITE	<u>RON</u>																	
					To Dirty Water Non-LCW							To Low Conductivity Water						
									Maximu							Maximu		
			T						m	- · ·	Accepta					m	- · ·	
			Total Heat	Averag e Heat	Heat Load to	Supply Temp	Delta Temper	Water	Allowabl e	l ypical (water)	ble Temp	Heat Load to	Supply Temp	Delta Temper	Wator	Allowabl e	l ypical (water)	Acceptal e Temp
	Quantity		Load	Load	Water				-	pressure		Water				Pressure		
Components	Per 36m		(KW)	(KW)	(KW)	n) (C)	delta)	min)		drop Bar		(KW)	n) (C)	delta)	/ min)	(Bar)	drop Bar	
RF Components	5		, ,	. ,	. ,	, , ,	,	,	. ,			. ,	,,,,	,	. ,	, ,		
RF Charging Supply 34.5 Kv AC-8KV DC	1/26 m	Service Tunnel	4.0	4.0	2.8	10	10	1.17	18	8	10							
	1/30111	Service Funner				40	40	1.1/	10	0	10							
Switching power supply 4kV 50kW	1/36 m		7.5	7.5	4.5	35	13.6	7.6	13	8	10							
Modulator	1/36 m	Service Tunnel	7.5	7.5	4.0				28.823			0.5						
Pulse Transformer	1/36 m	Service Tunnel	1.0	1.0	0.7													
Klystron Socket Tank / Gun	1/36 m	Service Tunnel	1.0	1.0	0.8													
Klystron Focusing Coil (Solenoid)		Service Tunnel	4.0	4.0	3.6													
Klystron Collector	1/36 m	Service Tunnel			45.8	*35>				2								
Klystron Body		Service Tunnel	58.9	47.2	0.0	*35>				5	+ - 2.5 C							
Klystron Windows	1/36 m	Service Tunnel			0.0	*35>				1								
Relay Racks (Instrument Racks)	1/36 m	Service Tunnel	10.0	10.0	0.0	N/A	N/A		N/A	N/A	None	0.0	N/A	N/A		N/A	N/A	None
Circulators, Attenuators & Dummy Lo	1/36 m	Accelerator Tunnel	42.3	34.0	32.3						+ - 2.5 C							
Waveguide	1/36 m	Accelerator Tunnel	3.9	3.9	3.5						+ - 2.5 C							
Subtotal RF unit Only			140.10	120.10														
Total RF			162.8	140.8	99.49				- 99	0⁄∩		0.50						
Total Heat load to Dirty Water (per RF) 99.5 KW					cooled by	nrocess		n rust inhi	hitor			0/						
					cooled by	-		1105011111			`1	%						
						,		ductivity w	ator	1%								
otal Heat load to LCW (per RF) 0.5 KW									uoctivity M	ומנצו	1%0							

100 % LCW





100 % LCW

1% LCW (Pushback)

• <u>High Delta T</u> (currently used 20F delta in RDR, will likely be adjusted to higher delta T when we get more info)

Water system I'm familiar with personally , has less than 20F delta, LHC has 18 delta T, MI LCW deltaT around 15 F delta, FNAL CUB LCW system 10 F delta, Chilled water typically under 18F delta.

Need to look into XFEL approach where they have high delta T system by series/stacking load, to see if applicable

will still need more info on <u>max allowable temperature</u> and <u>pressure drop</u> information on various water cooled components

Consider limitation in the supply temperature in Illinois summer condition and the number of loops due to depth, Current LCW supply temperature is at 95 F..other affected items?(life of equipment etc)

Need to separately look into magnets water cooling (instead of scaling) because its already at higher delta T. Water system to BDS Dump at 54F delta already considered in RDR

Consider Keith's idea of having dedicated pump for the Klystron collector.

Others??

Process Water Summary

 We need to spend time understanding the info and criteria that is already available, understanding the locations of watercooled components and list/pursue what's missing

<u>Examples,</u>

ML RF (pressure drop components, max allowable temperatures) DR, Sources, RTML, BDS, IR (need to spend the time to understand the location of components & requirements)

- There were potential items for optimization (from RDR cost reduction exercise) that can be revisited, but we need to update criteria and design for each area system first (baseline).
- The critical item is getting any updated criteria early (this is the one that will be used to develop the <u>baseline design</u> for <u>each</u> area system), and ensuring getting this from an official group, instead of getting request from various directions.

(where to get this?, is it still by area system?? In case of disagreement/fight amongst user, who will officially decide which one to give to CFS as criteria?area system leaders? Is there some sort of a "separate group, integration maybe?" that will decide that?