KEK Experiences of CFS

Masakazu Yoshioka

(KEK, J-PARC Project Office)

September 10, 2007 @ CFS-AS Kick-off Meeting

Acknowledgement:

Masanobu Miyahara, Tsunehiro Hanayama, Terunori Shibahara, Shigeru Takeda

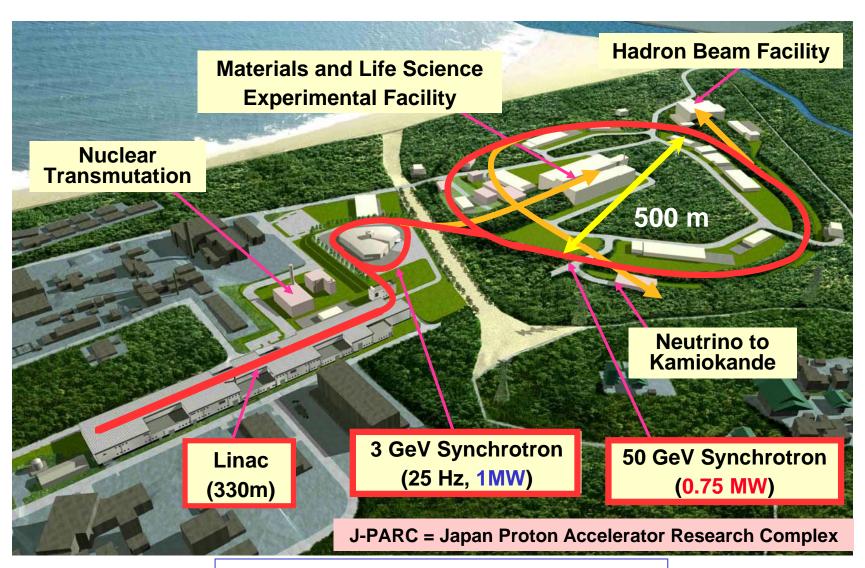
	1960	1970	1980	199	0	2000		2010	2020
1.3 GeV INS-ES									
12 GeV KEK PS									
TRISTAN		••••							
KEKB			• • •					•••••	
Super KEKB						• • • • • •	-	••••	
J-PARC					••/••				
ILC			•	••••	• •/• • • •		•		
2.5GeV PF	•				7				
6.5 GeV PF-AR									
1.3 GeV ATF									

INS: Institute for Nuclear Study, University of Tokyo, KEK's Mother Institute

In Japan, TRISTAN was the first large-scale facility (1980s) 20 yeas later, J-PARC construction is underway.

Now

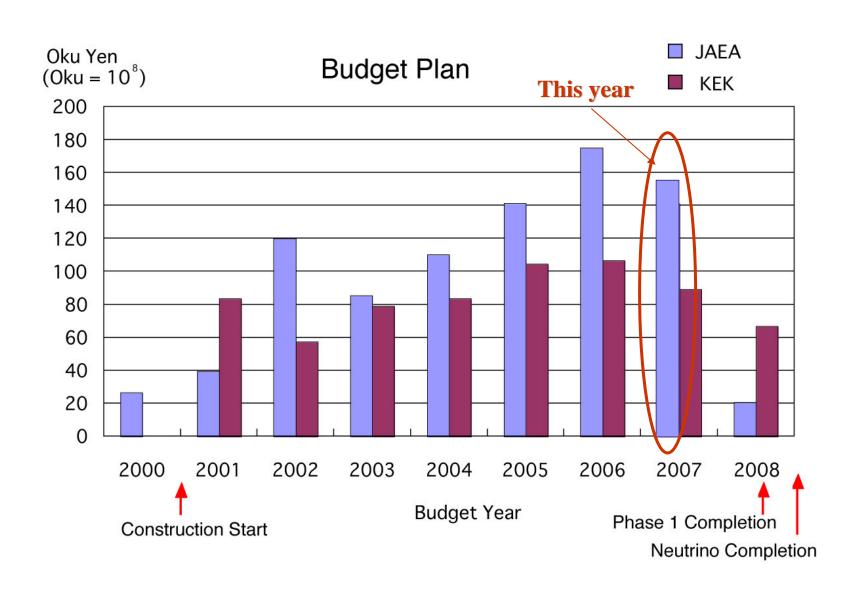
INS-ES in '60s

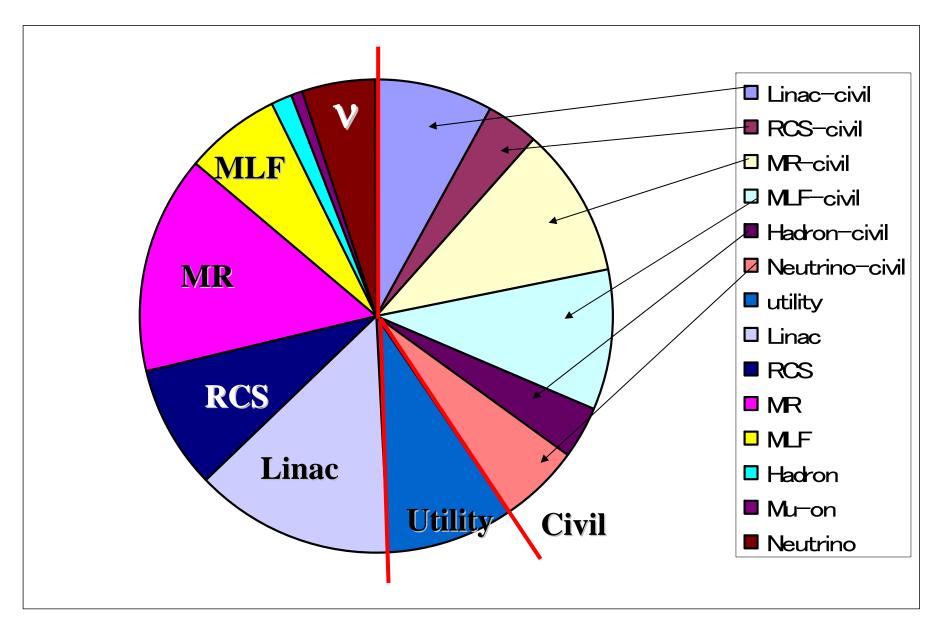


J-PARC

J-PARC Facility

Joint Project between KEK and JAEA



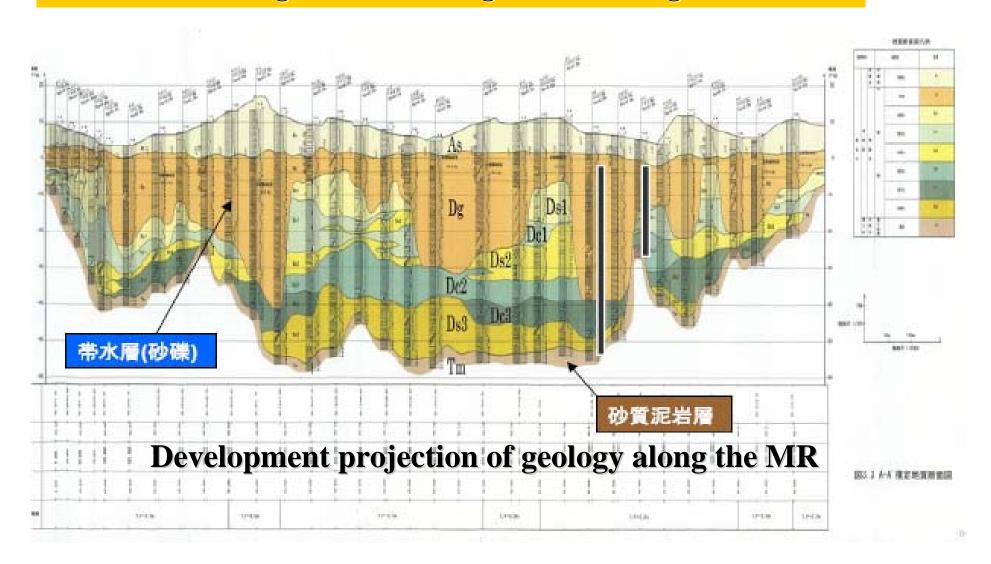

JAEA responsibility:

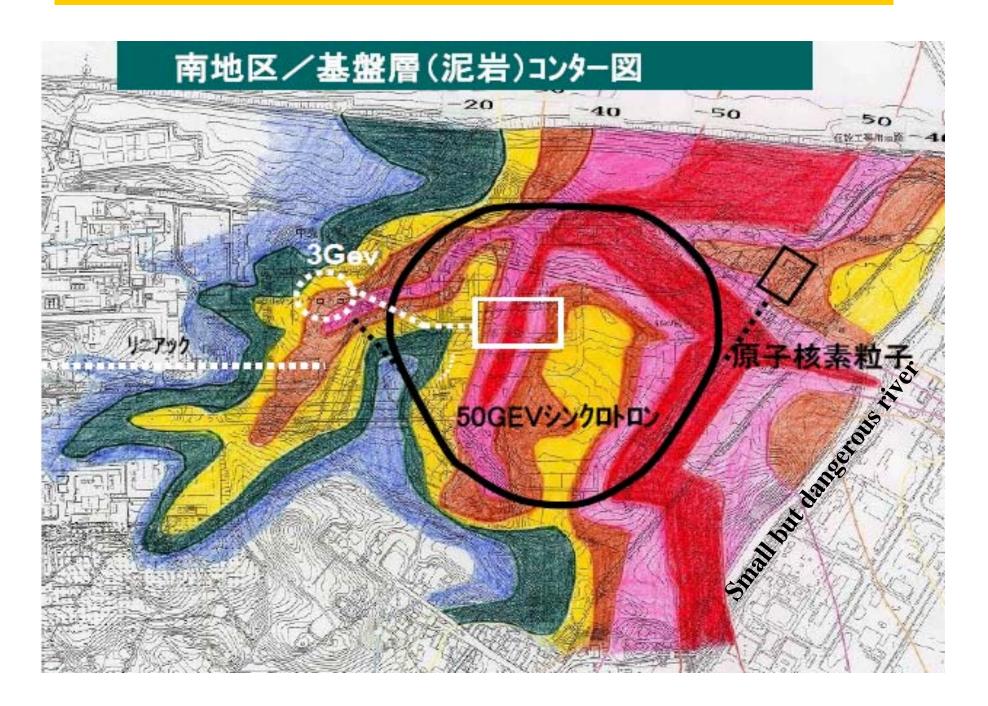
Linac, RCS and MLF

KEK responsibility: MR, Hadron and Neutrino

Construction Budget

Budget allocation

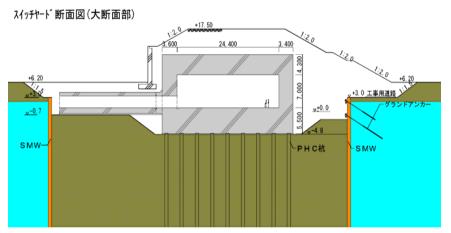

At J-PARC civil engineering work, we have experienced every kind of problems


▶Bad geology:

- **➤** No scientific site selection
- **▶** Deep bedrock, sandy mudstone with undulation
- ➤ Thick sand gravel with flowing and abundant groundwater
- **▶**Poor preliminary survey → need design change because of groundwater
- > Remains of salt farm
 - **▶**need additional budget and delay of schedule
- > Reserve forest area
 - >strong constraint for the construction method and procedure
- ➤ Goshawk (wild bird, a kind of falconine)
 - **▶**break of construction during child-raising
- >Strong constraint related with the site problem with nuclear facility
 - **▶unexperienced gate control, unexperienced confusing regulations, etc. etc......**
- > Contracts for civil design and real construction must be separated
 - ➤Incomprehensible law to keep "transparency", poor feed back from reality to design
- ➤ Segmentalized construction zone due to the budget schedule
 - **≻**Complicated construction management, extra-cost, etc. etc......

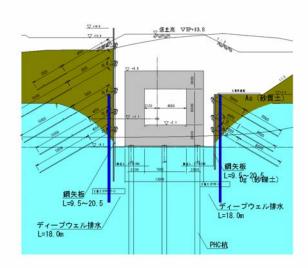
Very bad geology

Bed rock, deep underground, sandy mudstone with undulation Thick sand gravel with flowing and abundant groundwater

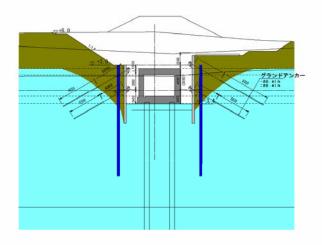


Remains of salt farm

- >400 years ago
- ➤ Need additional budget
 ➤ 5 million dollar
- **≻one year delay**


Tunnel Circumference 1.6km w5.0m, H3.5m **Tunnel inner size Tunnel floor level** -2m from sea-level **Excavation volume** 0.8 Million m³ **Back-filling volume** 0.72 Million m^3 **Number of PHC pile** 1400 **Volume of concrete (MR)** 0.11 Million m^3 **Reinforcing steel 12000 ton**

Ground total concrete volume of J-PARC: 0.48 Million m³


Thickness of concrete of arc section floor 1.2m, wall 0.8m, top 1.0m **Maximum thickness of concrete**

5.5m

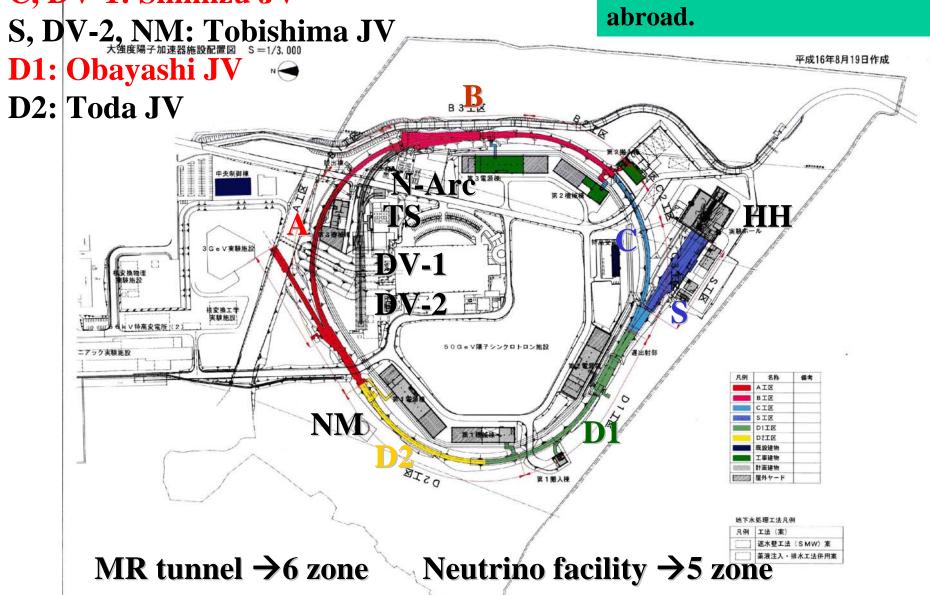
50GeV標準断面図 (大断面部)

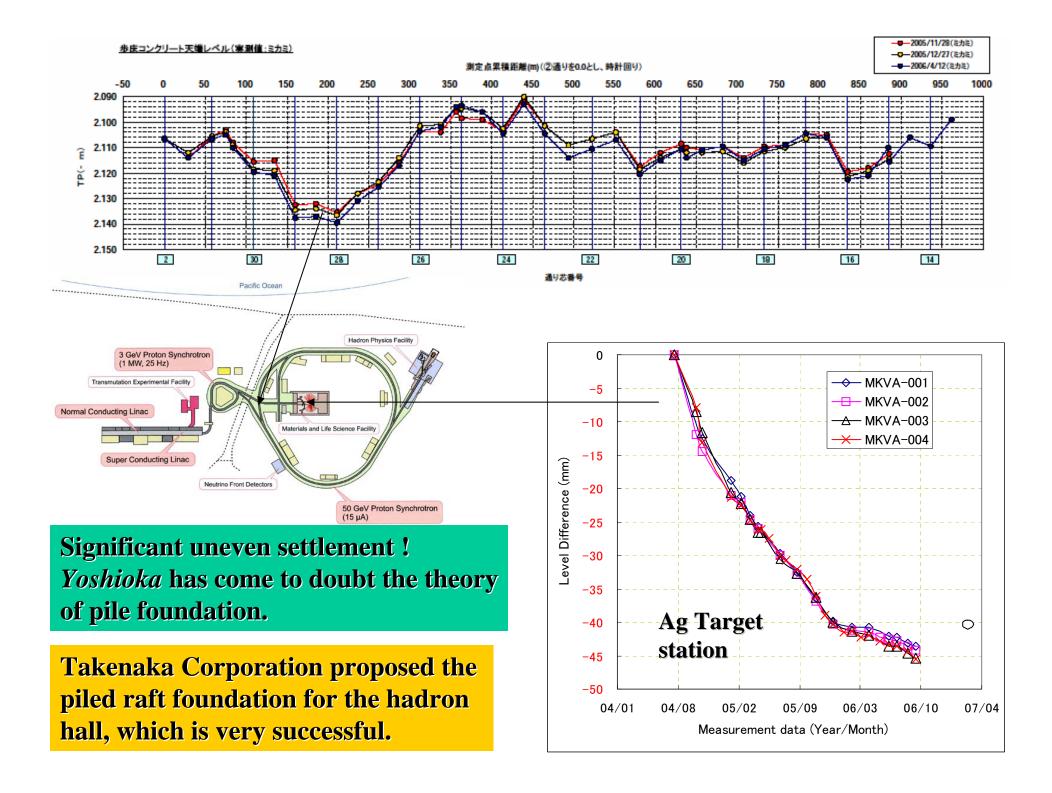
50GeV標準鋼矢板断面図 (標準部)

Groundwater problems

Original design Design changes pumping-up with kettle hole → design debacle! ←poor preliminary survey Deep well and seepage control method (SMW and/or grouting) volume of pumped-up water > 20kton/day

A: Kajima JV

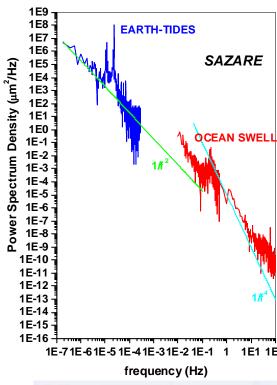

B, N-Arc: Taisei JV

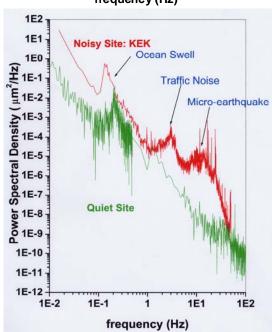

C, DV-1: Shimizu JV

TS: Kumagai JV

HH: Takenaka JV

International bidding for the contract with >720 M Yen. But no proposal tender from abroad.





Ground motion at J-PARC site Earth-tides are clouded by ocean-tides

Thanks, J-PARC is not the collider

Work done by Shigeru Takeda

JF	<u></u>	01	JYF2002					JF`	Y20	03		JΥ	YF2004		JFY2005			05	JFY2006					JF	Y20	07		JFY2008		
	10	1	4	7	10	1	4	7	10	1	4	7	10	1	4	7	10	1	4	7	10	1	4	7	10	1	4	7	10	1
Geological survey													Ext	ern	al r	evie	w													
Execution Design												De	sign	сh	ang	e														
MR Tunnel																														
Zone-A																														
Zone-B																														
Zone-C																														
Zone-D1																														
Zone-D2																														
HADRON																														
Zone-S																														
Hall																														
Neutrino																														
Arc																														
TS																														
DV-1																														
DV-2																														
NM																														
Accelerator																1	Co	mpo	ner	nt ir	nsta	llat	ion			Ор	erat	ion		

Accelerator components are installed into the tunnel in parallel with civil work.

Main problems of real civil work in the field;

- Poor finish of floor painting → a few thousand square-meter, almost fraud → delay of schedule
- **Bad concrete depositing**→a few hundred square-meter→delay of schedule
- Penetrated concrete crack → Yoshioka's view: mostly resulted by the mechanical stress → delay of schedule
- **■**Uneven settlements → *Yoshioka's* view: problem of piled foundation → repeat magnet alignment → delay of schedule

Ironically, we could have accumulated many experiences by the segmentalized construction zone.

- **❖**We could work together with five super- and three middle-ranking construction companies and accumulate a lot of experiences how to work together, how to keep the good quality, etc.
- **❖**The quality of the construction work does not depend on the company-size, but on the attitude and arrangement of the company and the character and ability of the head of the field site.
- **❖**The construction management is essentially important to keep the good quality.

Lessons from experiences,

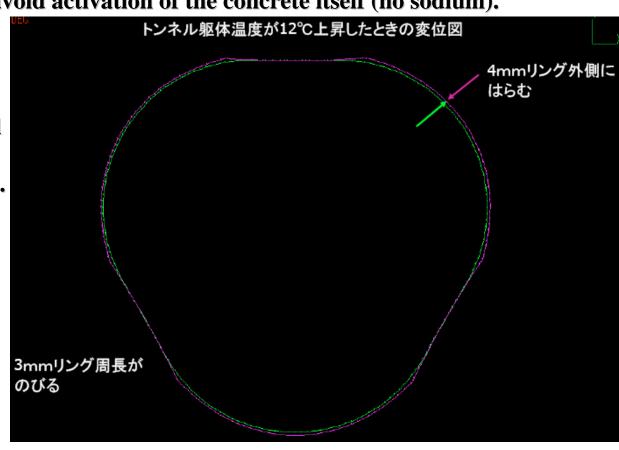
- **❖**Site selection should be done based on the science; geology, geography, groundwater, animals and plants, etc. (Japanese infrastructures are excellent)
- **Separation** of contracts for design and real construction makes poor interaction between the design team and reality \rightarrow We should find out the better way!
- **Ordering** party should have a well-qualified team to make the design by its own ability and find out the effective relation with the consulting company (companies).
- **❖Bidding** with engineering evaluation is efficient to introduce better technology and to reduce the cost and term of works.

		JΥ	F19	80		JFY1981				JΥ	F19	82		JFY1983				JF`	Y19	84		JFY1985				JF`	Y 1 9	86
	4	7	10	1	4	7	10	1	4	7	10	1	4	7	10	1	4	7	10	1	4	7	10	1	4	7	10	1
Baseline Design																												
Execution Design																												
Survey for MR																												
AR civil																												
AR buildings																												
MR civil																												
MR builings																												
AR accelerator																												
MR acceelrator																												

TRISTAN is the 32GeV+32GeV e+e- collider consisting of a linac (500m long), an AR synchrotron (480m) and a MR synchrotron (3km)

Outline of the civil engineering work

- **■Piled foundation** → Experimental halls and straight sections
- **■**Raft foundation → Arc sections
- **■**Excavation volume → 1.2 million m³
- **Number of piles**→2400
- **■**Volume of concrete → 0.25 Million m³


Powerful headquarter led by Tetsuji Nishikawa Powerful civil engineering team was newly created at KEK

Lessons for J-PARC from TRISTAN experiences;

- **■**No expansion joint at MR
 - **Expansion joint makes many troubles**
- **■**No steel base-plate for magnets on the tunnel floor (floor concrete is strong enough)
 - **■**There is a superstition in Japan that magnets should be fixed on the steel plate.
- **Water-tight tunnel using catalytic agent from outside of the wall.**
- **Choose special concrete with slow hydration reaction to avoid too big temperature difference in the mass-concrete between the interior portion and surface.**
- **Choose special aggregate to avoid activation of the concrete itself (no sodium).**

Thermal expansion of the tunnel due to the temperature rise of 12 degree C (no expansion joint).

By Nikken Sekkei

Yoshioka's comments for ILC EDR Asian effort based on the TRISTAN, KEKB and J-PARC experiences

Even though there are many differences between KEK's experiences and ILC, I try to find out useful case examples.

Main differences;

- \bullet O(km) \rightarrow O(10km)
- •Site is inside of the laboratory campus \rightarrow outside \rightarrow we can learn from SPring8 experiences They established the new facility at the green field working closely with local government.
- **■**Domestic → international project
- **No site selection** → site selection
- **Shallow underground** → deep underground

Ordering party should be consisted in

- Accelerator scientists
- Civil engineering experts

Strong team should be created, which is organized by accelerator scientists and civil engineering experts, at KEK, for example. Well-qualified team only can manage and/or operate the contract with consultants and general construction contractors.

We should find out or we should cultivate experts, who understand requirements from the ordering party, both at the

- **Consulting companies of civil engineering design.**
- **General construction contractors.**

The existent budget system does not fit with ILC, which is the large-scale international project.

We should avoid to break into too small-size contracts, and negative effect due to the single-year budget.

Substantial preliminary survey for geology, groundwater, environment, etc. are needed.

Scientific review by the outside experts is important.

Thank you for your attention