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Overall layout of LHC and its detectors
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The LHC accelerator in tunnel

p-p collision -> 1034 cm-2.s-1, 14 TeV c.m., 0.5 GJ stored energy

24 km of superconducting magnets @1.9 K, 8.33 T
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Cryogenic system layout
• 5 cryogenic islands
• 8 refrigerators 

– 2 at P4, 6 and 8, 
– 1 at P2 
– 1 at P1.8 

• 1 refrigerator serves 1 sector (18 
kW @ 4.5 K, 600 kW precooler) 

• possibility to couple two 
refrigerators via the interconnection 
box 2 refrigerators for 1 sector 

(distribution line)
(interconnection box)
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LHC cryogenic system layout 2/2
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Historical milestones of the LHC

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

Preliminary conceptual studies

First magnet models

Start structured R&D program

Approval by CERN Council

Industrialization of series production

DUP & start civil works

Adjudication of main procurement contracts

Series production

Start installation in tunnel

Cryomagnet installation in tunnel

Functional test of sectors

LHC inauguration

Operation for physics

2010's 2020's1980's 1990's 2000's

?
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Series production of LHC components
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90 main industrial contracts in the world
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Production and test rates

• The planned production or test rates were generally 
reached and often overcome, 

but always after a “learning” period.

• The main difficulty is to assess the duration of this 
learning period and to have it agreed by all the 
stakeholders.

• For the LHC cryogenics, this learning periods were 
often too optimistic. 
Examples: the cryomagnet cold test, the quench valve 
production and the cryogenic distribution line (QRL)
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Cryomagnet test station

12 benches, rate: ~15 magnets per week
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Cryodipole cold tests

Delays: mixing of sub-contractor insolvency and learning period for 
efficient test bench operation (cog-wheeling).
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Quench-valve dashboard

Delays: Finalization of the design 
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QRL Dashboard
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Example of construction problems

Composite material 
(Neonite®) fabricated with 
short fibers instead of long 
ones insufficient 
resistance to impacts

The LHC cryogenic distribution line (QRL) problem:
Elements equivalent to two sectors to be repaired and one 
sector to be reinstalled (by CERN).
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Example of achieved production rates

Fabrication of QRL modules
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How to deal with construction problems?

• For large and ambitious projects, everyone is convinced that, in view 
of their complexity, some problems will definitely arise.

• But when a problem happen, everyone (except the ones who have to 
deal with the problem) asks: How is it possible  to make such a 
mistake ?

• General rules to avoid construction issue:
– Do not specify something for which you have no solutions.
– Do not mix prototype, pre-series and series production. Be sure that 

when the series production starts, all developments are completed.
– Put sufficient independent resources on quality control. (Mandatory for 

large series). Do not trust the internal quality control of a manufacturer 
even with ISO qualification.

• For LHC a contract for quality inspection has been placed with only 2 
“itinerant” inspectors foreseen to follow cryo-equipments 7 inspectors were 
required to follow correctly the QRL quality inspection.

– Put sufficient effort to test the critical components, but the difficulty 
remains in the risk assessment. (Always easier to do after the problem 
detection).



L. Tavian, 13 Sept’07 Cryogenic experience from CERN LHC 19

Splitting or not splitting ? 

• Splitting of contract for the procurement of equipment 
is generally a good decision:
– To secure the production: If one supplier has difficulties, part 

or totality of the remaining production can be transferred to 
the other suppliers.

– To get some competition within the suppliers (performance, 
delays…)

– For political reason (Funding return in several places / 
countries / continents)

• But:
– a known splitting before tendering could generate less 

commercial competition, i.e. higher offer prizes. (In cryogenic 
refrigeration only two suppliers are on the market)

– splitting generates more contract follow-up needs which are 
generally not anticipated in the manpower plan.



L. Tavian, 13 Sept’07 Cryogenic experience from CERN LHC 20

Contingency for difficulties: 
time or money?

Following difficulties identified on a contract:
• If time is available:

– Ideal case for the project as some pressure can be put on 
the supplier to fulfill the contractual terms.

Time is contingency

• If no time is available (supply already on the 
critical path):
– In this case, extra resources (i.e. money) have to be 

allocated by the project to solve the difficulties:
• Via a second contract in case of splitting of contract
• Internally in case of re-internalization of part of the supply
• Directly to the firm via “justified” claims.

Money is contingency
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Cost breakdown

~500 MCHF (including special 
contributions)
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Commissioning / operation strategy

From commissioning to operation staging:
- Starting from surface equipment (4.5 K cryoplants)
- Following by cavern equipment (interconnection box then 1.8 K refrigeration units)
- Finishing by tunnel equipment (QRL, machine)  
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Commissioning of the first LHC sector

• The 1st LHC sector, sector 7-8, began to be cooled down for the 
first time on Jan. 15th, 2007

• After about 2 months, the temperatures of all the magnets were 
below 2 K, i.e. more than 10 tons (70’000 liters) of pressurized 
superfluid helium distributed along 3 km have been produced 
(about 20 times higher than Tore Supra).

• Nevertheless, to reach this successful milestone, several 
problems were encountered: 
– Unbalanced cool-down
– Unexpected long cool-down
– Problems with ex-LEP cryoplant
– Problems with 1.8 K refrigeration units
– Longer tuning of the tunnel cryogenics
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Machine flushing Wk 2  Jan’07

Before

After

Kapton bits

Metal strips

≈ 50 h

+ 8 L of Water
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First sector (S7-8) commissioning

Electrical quality 
assurance tests at 
stable conditions
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Cooldown of first sector 
(4625 t over 3.3 km)

600 kW precooling to 80 K with LN2:

- up to ~5 t/h

- 1250 t of LN2 in total

- 6 LN2 trailer per day during 10 days

Unloading of LHe & LN2
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Cool-down generic flow scheme
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Unbalanced Cool-down (Measurement)
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Unbalanced Cool-down (Simulation)
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Unbalanced Cool-down (Analysis)

Evolution of ratio of ΔP of TNC at different positions
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How avoiding unbalanced cool-down ? 

Header D

CV920 (Adjustable valve)Header C

QV (on-off valve)

Di Do

Ci

QV (on-off valve)

Periodic switch-over (every 12 hours) of QV valves:
The available cool-down flow goes in one cell, then in 
the other with no increase of the total cool-down time.
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Unexpected long sector cool-down

• Longer cool down time: 36 days instead of 15 days (without electrical QA plateaus)
– Learning and tuning of the process (unbalance, …)
– Reduced available cooling power:

• LN2 logistic during nights and week-ends
• Limitation on turbo-expanders not working at nominal conditions
• Flow restriction in the cold part of the 4.5 K refrigerator
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Simulation of 300-80 K cool-down
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Simulation of 80-4 K cool-down

Calculated and measured results of the 1st normal CD from 80 K to 4.5 K
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Problem with Ex-LEP cryoplant

Sub-cooler recovered from LEP 
undersized:

too high tunnel supply 
temperature
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Problem with Ex-LEP cryoplant
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Problem with the driving system of 
one cold compressor

CC2 frequency-drive 
stops on « overload » 

after some time 
above some load
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Switch of refrigerators: Validation of redundancy
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Improvement after refrigerator switch
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Machine tuning: Current feed boxes

• No cold tests of these boxes before sector commissioning (skipped 
for time and resource saving).

• Condensation problems at the top of chimneys (very humid 
condition in tunnel).

• Identical problem for the 60 A leads distributed in the tunnel 

3-10 ’C

Dry air encapsulation Copper strip 
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Steady-state: current leads

• Extensive calibration program for the liquid helium level gauges
• Once commissioned, successful operation at nominal conditions
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Steady-state cold-mass temperature
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Steady-state: magnets cooling
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JT valves: Flow caracteristics

Installed 
R ~ 25

New  R ~ 100
Large sensitivity gain
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Availability during arc powering test
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Cryo-maintain

CW23: Deactivation of Cryo-start during the night and instrumentation (heater) problem
CW24 & 25: Mainly ELQA and powering w/o quenches
CW26: Problem with electrical supply on the PLC of the 4.5 K refrigerator
CW27: down-time due to quench recovery
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First sector warm-up
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Content

• Overview of the LHC cryogenic system

• Construction experience 

• Commissioning / Operation experience

• Preliminary results for measured static heat 
loads.

• Conclusion
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Typical LHC cross-section
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LHC cooling flow-scheme
LHC Standard  Cell (106.9 m)
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Heat inleaks on cold-mass circuits 
Measurement by global assessment 
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Good performance of sub-cooling HX

Total heat load 961 W including 401 W of additional electrical heating
560 W of heat inleaks at 1.9 K, i.e. 0.2 W/m (0.21 W/m calculated w/o 

contingency for a standard cell by the Heat Load WG)
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Vacuum & cold-mass sub-sectorization

20 % of the sector was not operating at nominal insulation vacuum creating 
extra heat inleaks (factor 2 to 3 according to valve opening), i.e. nominal sub- 
sectors have probably smaller heat inleaks than expected by the HLWG.

Vacuum sectorization:

Magnet vacuum barriers          Jumper vacuum barriers          Cryogenic line vacuum barriers

Cold-mass sectorization:

Bus-bar plugs              Safety relief valves              Cooldown and fill valves

QRL vacuum jacket

Magnet vacuum vessel

Bad vacuum (Helium leaks)
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Heat inleaks on cold-mass circuits 
Local measurement on sub-sectors 

Q23_25R7 (5 Jul 07)
U = 0.0332t + 1234.3

R2 = 0.9998
U = 0.0656t + 1138.5

R2 = 1

U = 0.0964t + 878.48
R2 = 0.9999
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Measurement by variation of 
internal energy during a 
natural warm-up of a sub- 
sector in superfluid state.

Applying a known power allows 
to assess also the He content

Sub-sector Q [W] q [W/m] V [l/m]
Q27_29 R7 27.0 0.13 24.8
Q23_25 R7 26.9 0.13 25.4
Q15_17 R7 27.9 0.13 24.3

Uncertainty: +/- 2 %

- He content: in accordance with the calculation and warm measurements
- Distributed heat inleaks: 33 % lower than expected by HLWG (but the shields were 
colder in average by about 5 K)
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Heat inleaks on thermal shield circuit

• Global measurement by enthalpy balance at 
the cryoplant interface:

– 19.8 kW measured to be compared to the 23.5 kW 
assessed by the HLWG.

– i.e. 6.6 W/m measured to be compared to 7.7 W/m 
assessed by the HLWG (15 % lower than 
expected)
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QRL heat inleaks measurement

Thermal shields
About 2.7 W/m 

Cold headers
About  0.19 W/m 

Measured done on a QRL sector (S8-1) without magnets
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Distributed static heat in-leaks in a 
standard cell [W/m] 

Temperature level 50-75 K 4.6-20 K 1.9 K LHe 4 K VLP GHe
C M C M C M C M

Magnet side 4.5 3.9 0.14 ? 0.19
0.13*

N/A N/A
QRL side 3.2 2.7 0.09 0.09 0.02 0.11 0.10

Total 7.7 6.6 0.23 ? 0.21 0.13* 0.11 0.10

C: Calculated (HLWG)
M: Measured

Very good agreement between calculations and 
measurements.
- But a lot of effort in component testing (thermal model, 
pre-series, string tests…)
- And a global management in a Heat Load WG (2 years 
of active work)

*: with colder thermal shield temperature
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Conclusion

• LHC enters its last exciting commissioning phase.

• The construction phase confirms that contingency are 
mandatory to deal with the learning process and problems. Do 
not forget quality inspection and contingency. 

• Cryogenic commissioning of the first LHC sector done:
– No “big” surprise / mistake, but some “small” consolidation 

identified.
– Tuning of cryogenics of this complex system takes more time 

than foreseen/allowed
• Heat inleaks are as expected thank to the preliminary work on 

the thermal validation.
– Waiting for dynamic heat load measurement to have the 

complete picture. (e-clouds remains a big uncertainty)
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