

Cryomodule Interface definition

N. Ohuchi

Date 2007/Sept./12-14 EDR kick-off-meeting

Global Design Effort

1

- Cryomodule components to be designed with another group
 - Thermal calculation: cryomodule and cryogenic
 - Calculation of heat load, temperature profile in the cryomodule, cool-down and warm-up calculation
 - Mechanical calculation including vibration: cryomodule, cavity and beam dynamics
 - Support design for the nine cavity cryomodule
 - Cavity from gas return pipe, gas return pipe from vacuum vessel
 - Movement of cavities by cool-down and warm-up
 - Vibration analysis of the cryomodule components and its effect on the beam dynamics.

– Pipe design: cryogenic and cryomodule

- Pressure drop calculation of gas return pipe, helium supply pipe, shield cooling pipes and 2.2 K helium pipe
- Piping in the cryomodule

- Cryomodule components to be designed with another group
 - Cold mass assembly inside and outside clean room: cryomodule and cavity
 - String assembly of nine cavities inside the clean room
 - Installation of cavity string to the cold mass
 - Alignment of cavity to the cryostat target
 - Gate valve: cavity and cryomodule
 - Assembly and support of gate valve
 - Beam line HOM absorber: ?? and cryomodule
 - Assembly and thermal calculation in the cryomodule: cryomodule
 - HOM absorber: ??
 - Beam pipe pumping: vacuum and cryomodule
 - The beam-line vacuum is segmented into strings of 154.3m.
 - Pumping system design
 - Thermal calculation

- Cryomodule components to be designed with another group
 - Insulating vacuum break : vacuum and cryomodule
 - Vacuum breaks are installed into strings of 154.3 m
 - Design of vacuum break: heat load through the break
 - Insulating pumping system of strings
 - Coupler vacuum system: cavity, vacuum and cryomodule
 - Fast acting cold gate valve: vacuum and cryomodule

FIGURE 3.2-1. Beamline vacuum system – 2 turbo-molecular pumps (TMP) with high sensitivity leak detector (LD) and residual gas analyzer (RGA), safety, clean venting system, slow start pumping etc.

FIGURE 3.2-3. Insulating vacuum system – 4 TMP pumping units: 2 with LD (leak detector) + 2 large screw pump for fore pumping.

Global Design Effort

- Cryomodule components to be designed with another group
 - Cryomodule 2D and 3D CAD work: cryomodule
 - All group should confirm the design from EDMS.

Date 2007/Sept./12-14 EDR kick-off-meeting

Global Design Effort

• Design work with cavity group

- Helium jacket and magnetic shield

- Design of the connection pipe to LHe supply pipe and pre-cooling pipe
- Cavity magnetic shielding combined with the vacuum vessel shielding
- Fiducialization on the helium jacket with respect to the cavity center
- High pressure gas regulation
- Tuner
 - Thermal anchor design
 - Cabling

Input coupler

- Coupler thermal anchor design
- Warm coupler support flange design on the vacuum vessel
- Thermal anchor design of RF cable (cabling in the cryomodule)
 - RF cable is study item to reduce thermal load.

- Temperature sensors

- Sensor type and position should be discussed with the cryogenic group.
- Cabling

Quadrupole Package

- Design work with magnet group
 - Helium jacket and magnetic shield not to leak the magnetic field
 - Design of the jacket and the connection pipe to LHe supply pipe and pre-cooling pipe
 - Magnetic shield design
 - Support design and alignment method
 - Alignment of the magnetic center to the fiducials on the cryostat
 - High pressure gas regulation
 - Current leads
 - Cooling channel design including the electrical insulation
 - Terminal design
 - Temperature sensors and voltage taps
 - Sensor type and position should be discussed with the cryogenic group.
 - Cabling
 - BPM
 - Installation
 - Cabling

Cryogenic system

- Design work with cryogenic group
 - Design of the end box and service end box
 - Design of cryogenic components and cooling pipes between the cryomodule, the end box and the service end box
 - Control of the liquid helium surface in the supply pipe

- Study of Heat load of cryomodule

• Need the heat load for design of cryogenic system.

Date 2007/Sept./12-14 EDR kick-off-meeting

Global Design Effort