Cryomodules: Status Report and Work Package Plan for the ILC Americas Region

Harry Carter

- Review of RDR work
- Present Status of Cryomodule Work
- Work Package Plan for ILC
 Americas
- EDR Cryomodule Plan

ilc RDR Review for Cryomodules

- As we all recall, the BCD cryomodule was the TTF Type 3+ design. The ACD was the Type IV cryomodule and an additional alternate was to consider a separate cryostat for the quadrupole magnet.
- The RDR Cryomodule was the Type IV with the predominant features of:
 - A 26-cavity RF unit consisting of three cryomodules
 - Two cryomodules containing 9 cavities each
 - One cryomodule containing a centrally located quadrupole/corrector/BPM package and 8 cavities
 - Blade-style slow tuners with piezo fast tuners
 - Reduced cavity-to-cavity interconnect spacing
- Development of the Cryomodule section of the RDR was a joint effort between Carlo Pagani, Norihito Ohuchi, and myself, with editing by Nick Walker and Chris Adolphsen, and final review by Nan Phinney
- The bulk of the text relied heavily on the TESLA TDR
- Areas described as requiring further work were
 - Type IV Cryomodule design development
 - Improved fiducialization of cryomodules
 - Cryomodule cost reduction
 - Developing a plan for shipping cryomodules

Location	Quantity	Multiplier	Total	Unit Breakdown	Notes
Main Linac	936	2	1872	624 standard 1248 standard	w/quad w/o quad
RTML	60	2	120	64 standard 56 standard	w/quad w/o quad
e- source	21	1	21	11 standard 4 special 6 special	w/quad 6 cavities + 6 quads 8 cavities + 2 quads
e+ booster	22	1	22	12 standard 4 special 6 special	w/quad 6 cavities + 6 quads 8 cavities + 2 quads
e+ keep alive	2	1	2	2 special	w/quad(s)
Undulator	13	1	13	9 standard 4 standard	w/quad w/o quad
Total 1300 MHz			2050	2050	1300 MHz
Damping Rings	32	3	96	96 special	650 MHz

Table developed by T. Peterson as part of Global Systems/Cryogenics

- International Cryomodule Design Effort
 - Type IV CM design meetings held at:
 - CERN, January 2006---kickoff meeting
 - FNAL, July 2006---design status report and details development
 - INFN-Pisa, October 2006---detailed design meeting
 - FNAL, November 2006--- week long I-DEAS training class
 - INFN-Milano, May 2007---design review and status report
 - FNAL, July 2007---design review and status report
 - Goal: Complete engineering design package by October 2007 (now expect this to be end of CY07)
- Cryomodule Cost Studies
 - Industrial-based RF unit cost study led by AES (used LCFOA members)
 - FNAL-based study led by R. Stanek (members inc. JLab and SLAC)
- Industrialization
 - R. Kephart formed a study group (led by S. Mishra / P. Garbincius) charged with the development of a U.S. plan. Effort is ongoing with a report due before the end of this year.

Infrastructure at FNAL: CAF-MP9

- Functions:
 - Cavity string assembly in Class 10 clean room
 - Roll out of cavity string
 - Upper cold mass pre-assembly
 - Prepare cold mass for transport to CAF-ICB

ic Infrastructure at FNAL: CAF-MP9

- Maximum throughput: 2 cavity strings per month
- Future/upgrades:
 - Dress cavities prior to horizontal testing (near term upgrade)
 HPR

- Functions:
 - Receive cold mass pre-assembly from CAF-MP9
 - Complete cold mass assembly, including final alignment of cavity string
 - Insert cold mass assembly into vacuum vessel
 - Install warm part of power couplers
 - Leak final cryomodule assembly
 - Prep for shipping to ILCTA_NML

CAF-ICB maximum throughput is 2 cryomodules per month

Vacuum vessel/cold mass assembly fixture at ICB

Cold mass assembly fixture (DESY)

- CM-Related Functions:
 - Receive cryomodule assembly from CAF-ICB
 - Install cryomodule in NML test cave
 - Operate cryomodule as part of the NML test accelerator
 - Perform a complete RF unit test

IIL

FNAL Infrastructure: Future Plans

- Vertical Testing System at IB1
 - Increase from one to three test cryostats
 - Upgrade cryogenic system to support all testing at IB1
- Horizontal Testing System
 - Design and construct a second test cryostat (HTS-2) capable of simultaneously testing two dressed cavities or one cavity + quadrupole
- Cavity Processing Facility (CPF)
 - Design and construct a processing facility capable of performing 100 cavity processing cycles per year
- Cryomodule Test Stand
 - Using the test stand developed at DESY as a model, develop and construct a cryomodule test stand at FNAL

- Effort is funding limited requiring a phased approach
- Cryomodule delivery
 - 1st (Type 3+) cryomodule built from "kit" of DESY parts in late 2007
 - 2nd (Type 3+) CM 2008 built with U.S. processed cavities
 - 3rd (ILC Type 4) CM 2009 all U.S. components
 - Replace all three CMs with ILC Type 4+ in FY2010
- FY07: Start as a Cryomodule Test Stand
- FY08: move A0 photoinjector, start civil construction for new bldg
- FY09: 1st beam operation, 2-3 CM, low rep rate operations
- FY10: replace all 3 CM with ILC type CM
- FY11: install new refrigerator, ILC RF Unit operations
- Collaboration: DESY, INFN, ANL, Cockroft, NIU, Rochester, KEK

Source: R. Kephart, PAC 2007

Infrastructure--Future Plans: ILCTA_NML

Cryomodules: Status and Plans

- CM1: TTF Type 3+ Design
 - Comprehensive kit supplied by DESY
 - Standard TESLA style cavities w/unequal length beam tubes
 - Cavities use lever style tuner at end of cavity
 - Partial string of four cavities are assembled in MP9 clean room; other four cavities have been received at FNAL
 - Expect CM1 assembly to be completed by mid-November 2007
- CM2: TTF Type 3+ Design
 - Cavities from Accel and AES planned to be used
 - Cavities have equal length beam tubes
 - All cavities use blade tuners
 - Cavities will be dressed and horizontally tested at FNAL
 - Cold mass and vacuum vessel supplied by INFN-Milano
 - Expected to be completed by late Summer 2008

Concern is having enough dressed, tested cavities

Cryomodules: Status and Plans

- CM3: Type IV Cryomodule
 - TESLA shape cavities w/equal length beam tubes
 - Blade tuners

IIL

- Revised helium vessel design inc. stainless steel 2 phase tube
- Quad/corrector/BPM package in the center of the CM
- Quad design suitable for operation at low beam energies at NML
- Conductively cooled, LHC design, 100A magnet leads
- Design work to be fully finished by end of CY2007
- Procurement of major components to begin at start of FY08

ILC Americas Work Package Plan

During the ED period

- Goals for SCRF Linac Technology include:

- Complete the critical R&D as identified by the R&D Board Task Forces during the RDR phase.
- Coordinate the industrialization efforts in each region (test facilities)
- Identify a plan for reducing 'design variants', with a goal to consolidating finite resources on a single (or plug compatible) engineering solution (prototyping and DFM).
- Identify key CFS cost-driving interfaces that require an early down-select of supported alternative solutions.
- Identify (clarify) ways in which the maximum benefit can be obtained from the European XFEL project, including the industrialization effort.

During the ED period

- Milestones for SCRF Linac Technology include:
 - completion of the 'S0' cavity processing R&D
 - development and test of a high -gradient cryomodule, 'S1'
 - phased completion of each region's SCRF test facilities: ILCTA_NML, STF, XFEL support systems
 - development of an ILC project cryomodule production plan including definition of cost -reduction and cost -containment design and R & D efforts
 - development and identification of qualified vendors for cavity and cryomodule production
 - beam testing in order to support ILC parameters and design choices, such as cryogenic load testing, higher-order-mode extraction and flexible, precise, high level RF controls

ILC Americas Cavity and Cryomodule Work Package Plan

ART Nomenclature

- The Main Linac Cavity and Cryomodule plan: WBS X.9
 - WBS 1.9.1 Management WBS Level 2 Manager:
 - Shekhar Mishra, Hasan Padamsee, John Mammosser and Mike Kelly
 - WBS 2.9.1 Main Linac EDR: Cavity and Cryomodule
 - WBS 3.9.1 Cavity Fabrication
 - WBS 3.9.2 Cavity QC and Tuning
 - WBS 3.9.3 Cavity Processing and Vertical Testing
 - WBS 3.9.4 Single Cell Processing R&D
 - WBS 3.9.5 Cavity Horizontal Test
 - WBS 3.9.6 ACD Shape and Material
 - WBS 3.9.7 Cavity Failure and improvement of Manufacturing Yield
 - WBS 3.9.8 R&D on Cavity Processing
 - WBS 3.9.9 ILC Cryomodule
 - WBS 3.9.10 SCRF Material Research
 - WBS 5.9.2 Cavity HPR Systems
 - WBS 5.9.3 Upgrade to the Processing Facility
 - WBS 5.9.4 ILCTA_NML RF Unit Test Infrastructure
 - WBS 7.9.1 Industrial Development
 - WBS 7.9.2 Cavity and Cryomodule Processing and Testing Infrastructure

٠

ILC Americas Work Package Plan

FY07

- The major projects that are assumed to take place in FY07 includes
 - Order 24 ILC Cavities from Industry
 - Order parts for the 2nd Type-III+ Cryomodule
 - Fully commission and operate of the Jlab and Cornell cavity processing and vertical test facilities
 - Cavity processing R&D using 1-Cell and 9-Cell cavities
 - Construct and commission the vertical and horizontal test stands at Fermilab
 - Construct and commission the electro-polishing facility at ANL
 - Commissioning of the Cryomodule Assembly Facility with the DESY Kit
 - Complete the cryogenic at the ILCTA_NML for cooling the 1st Cryomodule
 - Complete RF power (Modulator and Klystron), distribution and controls at ILCTA_NML for the 1st Cryomodule.
 - Complete engineering design of the ILCTA_NML electron source

	FY05	FY06	FY07	FY08	FY09
Cavity and Cryomodule R&D					
Number of Cavities	4	23	16	30	60
Number of Cryomodule Parts		1	1	2	2
Cryomodules Assembled			1	2	2
Processing Capability (CY/yr)					
Jlab			30	40	50
Cornell			12	12	12
ANL/FNAL			20	50	50
FNAL					50
Cavity Failure Analysis					
LANL				4	4
MSU				4	4
1-Cell and ACD Program					
JLAB		x	х	х	х
Cornell		х	х	х	х
MSU				х	х
ANL/FNAL (1 Cell Only)			х	х	х
Infrastructure Development					
Jlab (Processing)		с			
Cornell (Processing)		с			
ANL (EP/HPR)			С		
LANL (HPR/Testing)			с		
MSU (HPR/Testing)				с	
FNAL Program					
VTS-1			с		
VTS-2 & 3				DC	с
HTS-1			с		
HTS-2					DC
CAF			с		
CPF (With Industry)			D	DC	с
ILCTA@Fermilab					
Cryomodule-1 (Type-III+)				IC	
Cryomodule-2 (Type-III+)				IC	
Cryomodule-3 & 4 (Type-IV)					IC
Cryomodule-4 & 5 (Type-IV)					XX

X: Planned, C: Commissioned, D: Design, DC: Design and Construct, IC: Install and Commission

ILC Americas Work Package Plan

- FY08 and FY09 plans address many of the milestones set forth in the ILC PMP including:
 - work toward completion of the critical R&D identified during the RDR phase.
 - completion of the 'S0' cavity processing R&D
 - work on the development and test of a high -gradient cryomodule, 'S1'
 - phased completion of the ART SCRF test facilities: ILCTA_NML support systems
 - development and identification of qualified vendors for cavity and cryomodule production

EDR Cryomodule Development

- Cryomodule Design Effort:
 - The T4CM effort is laying the groundwork for the ILC CM Design
 - Well organized and tasks shared across the regions
- The next generation CM (ILC Prototype?) must
 - Utilize an agreed upon set of technical standards (ANSI/ASME, etc.)
 - Be developed from a set of clear requirements that lead to a design specification
 - Incorporate value engineering and design for manufacture
- We need an EDR Review and Decision mechanism
 - An EDR CCB?---we need a to establish an approved baseline design as well as including a limited set of approved alternatives
- We need to establish control mechanisms
 - Reviews and approvals
 - Documented requirements
 - Engineering & production design packages
 - Quality assurance
 - Integration
 - Testing standards

Some Key Questions for EDR phase

- Is the goal to build IDENTICAL CMs all regions ?
- Are CMs that are "plug compatible" good enough ?
- Should completed CMs be shipped to the ILC site or should final assembly and test occur at the end use site ?
- Should we consider RF units, or even whole sections of the linac as deliverables from a region ?
- Do we agree on what must be done to the current CM design ?
- How important is it to lower the cost ?
- What is the "time scale" for changes ?
- What is the criterion for a "better CM design" ?
- How do we manage industrialization ?

- Significant work was accomplished by ART during the RDR development phase
- In FY08 and FY09 ART stands ready to meet many of the milestones set forth in the ILC Project Management Plan
- Development of the EDR CM requires a clear, concise specification as well as an agreed upon set of technical standards that must be met
- A set of key questions must be answered in order to effectively plan the EDR CM effort. Some have been presented---no doubt many more exist
- Coordination of efforts in the three regions is essential in order to minimize duplication of effort where it is not warranted