

RDR Cavity System

Mandatory and Optional Changes Lutz Lilje GDE

ILC Cavity Kick-off Meeting DESY 26.4.2007

Global Design Effort

1

• Morning Newspaper:

ILC Cavity Kick-off Meeting DESY 19.9.2007 **Global Design Effort**

2

TTF@1 GeV

Outline

- Cavity and cavity system design:
 - compare XFEL choices with mandatory and potential design changes for the baseline
- Review of RDR work for cavity system,
 - possible design changes,
 - fabrication changes for baseline cavity
 - HOM,
 - tank material,
 - seal,
 - endgroup welding,
 - thicker endplate,
- Indication of how 'scoring' cost/benefit will be done

TTF Cavity Today and XFEL Cavity

Old

New

- Only minor design changes to reduce cost/simplify manufacturing will be done e.g.
 - Removal of coupler port stiffener
 - Removal of 'pockets' short side
 - Removal of outside recess
 - Less holes in stiffener ring
 - Thinner stiffener ring
 - Review tolerances
 - Loosen where possible e.g. stiffeners rings

Mandatory Changes to Baseline: Cavity

- Cavity Length
 - Only real necessary change to increase ILC fill factor
 - Main issues
 - Need more compact tuner design
 - XFEL will not change this

Optional changes: Cavity

- Material
 - Large-grain
 - Straight-forward implementation if material available
 - See W. Singer talk
 - Still need thorough analysis of cost-benefit
 - Performance demonstration on multi-cells needed
 - So far only BCP result available
 - EP underway at DESY (stay tuned...)
- HOM design
 - Coupler kicks
- Tank material
 - Cost
- Thicker endplate
 - Lorentz-force detuning
- Seal
- End-group welding

Option : Large Grain cavities / BCP

Heraeus / Accel (three cavities)

Less fabrication steps (lower cost) no forging-rolling disk from ingot (less material pollution) High RRR ~ 500

(avoid HT to ∧K)

Probably higher gradients after Electropolishing (coming tests)

ILC Cavity Kick-off Meeting DESY 19.9.2007

Global Design Effort

Large Grain Nb: Comparison of EP vs. BCP

Two cavities (deep drawn cups) of Heraeus Nb with RRR 500; Reproducible gain of 10 and 13 MV/m after EP compared to BCP

The European

X-Ray Laser Project

9

Optional changes: Cavity

- Material
 - Large-grain
- HOM design
 - Coupler kicks
 - Needs further evaluation
 - Mitigation could be straight-forward
- Thicker endplate
 - Lorentz-force detuning
- Tank material
 - Cost
- Seal
- End-group welding

Coupler Kick

Igor Zagorodnov and Martin Dohlus ILC Workshop, DESY 31 May, 2007

ILC Cavity Kick-off Meeting DESY 19.9.2007

Global Design Effort

11

Ϊ**Ι**Ι.....

ilr

ILC Cavity Kick-off Meeting DESY 19.9.2007

Global Design Effort

HOM Wake Mitigation Options

- Following Chris Adolphsen there are fixes:
 - "Igor's solution of rotating the HOM relative the FPC this reduces the effect by a factor of 10"
 - Cavity design change
 - Needs beam test
 - "feeding every other cavity or every other cryomodule from the opposite side (like is done in the SLAC linac)."
 - Straight-forward solution
 - Is this still feasible from RF unit to RF unit?
 - Possibly simplest way to alter tunnel layout
 - "reducing the beam pipe diameter to 60 mm so the HOM and FPC antennae are not 'seen' directly by the beam (this is not a problem for the LL cavity for example note the irises could still be 70 mm diameter, but the wake would still be larger due to the smaller beam pipe size)"
 - Cavity design change
 - Needs beam test

Optional changes: Cavity

- Material
 - Large-grain
- HOM design
 - Coupler kicks
- Thicker endplate
 - Lorentz-force detuning
 - E.g. TESLA-type cavities at KEK
 - Thicker endplate design necessitated other design changes
 - Need to prove improvement in stiffness reduces Lorentz-force detuning
- Tank material
 - Cost
- Seal
- End-group welding

Improvement in the STF Baseline Cavities

Fabrication of the STF Baseline Cavities

- Surface treatment at 'standard' company
- Field emission in first processing
- Only few cells are limited at low field ~21 MV/m
 - Similar to first 2 production runs at TTF few bad cells, but larger number gaussian distribution at higher gradient
- Best cavity at 29 MV/m!
- Tighter QC for future production runs will be implemented

Vertical Test Results, Eacc of cells

Before (total~250 μm), after 2nd BP (total~500 μm)

Optional changes: Cavity

- Material
 - Large-grain
- HOM design
 - Coupler kicks
- Thicker endplate
 - Lorentz-force detuning
- Tank material
 - Cost
 - Need to understand cost differences between regions for Ti as tank material
 - Need to understand technical issues with stainless better
- Seal
 - Reliability
 - DESY 'diamond'-shaped seal choice for XFEL
 - Each lab tends to have its favorite sealing technology
 - Need 'neutral' technical analysis on pros and cons
 - Need data on reliability e.g. number of re-assemblies needed
- End-group welding
 - Cost
 - Need performance demonstration
 - Need cost-benefit analysis

Mandatory changes: Coupler

- TTF-III is baseline
 - Has performed up to at least 37 MV/m without problems
 - Processing time reduced significantly
 - Protection with dry nitrogen led to significant improvement
 - Problems have only been observed in case of assembly accidents e.g.
 - Wrong screw material (gripping)
 - XFEL choice
 - Minor design changes to reduce cost
 - Mainly result from industry study by LAL Orsay
- There is no mandatory change!

- Done in to steps
 - 1st set of 4 couplers
 - Very tight vacuum interlock thresholts
 - 2nd set of 4 couplers
 - Used 'relaxed' vacuum interlock thresholts
- Very fast processing
 - Due to improved handling after pre-processing at LAL Orsay

D. Kostin

- Comparable to individual cavity high power test results
- M7 preliminary!

ILC Cavity Kick-off Meeting DESY 19.9.2007

Global Design Effort

M6 and M7 RF conditioning

Comparison with Horizontal Test Coupler Processing

D. Kostin

Optional changes: Coupler

- Several Changes have been proposed
 - Need full cost-benefit analysis on each
 - Fixed coupling
- Several Designs have been tested on test stands successfully
 - Need still tests with cavities
- Disk-type windows
 TESLA-type at KEK
- Capacitive coupling
 - Ichiro system at KEK
- Larger diameter ports
 SLAC, LAL Orsay

Mandatory Changes: Tuner

- Must be compact
 - Cavity length change removes space
- XFEL Tuner
 - Cavity length not changed
 - Choice is Saclay I with piezo integration done by DESY
 - Performance demonstrated up to 35 MV/m
 - Endurance test in FLASH soon
 - 3 Modules equipped with fast piezo tuners
 - For optimum piezo performance cavities must be pretuned to lower frequency for tank welding

Tuner Setup

•Current design in use at FLASH

- **Design by CEA** —
- Fast piezo detuning introduce not _ from beginning
- Is the backup solution for XFEL —

of the MACSE tuner design (CEA Saclay)

ILC Cavity Kick-off Meeting DESY 19.9.2007

Global Design Effort

700 Piezo OFF 600 Piezo ON Detuning over the flat-top [Hz] 100 0 cav 1 - 35 MV/m cav 2 - 31 MV/m cav 3 - 35 MV/m cav 4 - 33 MV/m cav 6 - 20 MV/m cav 7 - 30 MV/m cav 8 - 23 MV/m

Maximum Lorentz Force detuning compensation results

ILC Cavity Kick-off Meeting DESY 19.9.2007

Global Design Effort

Optional Changes: Tuner

- Motor accessibility
 - Motor outside cryostat
 - TESLA-type at KEK
 - Need additional feedthrough on cryostat
 - Motor accessible via special flange
- Piezo accessibility
 - Piezo accessible from outside
 - Through larger coupler flange TESLA-type at KEK
 - Extra-flange for Ichiros at KEK
- Piezo temperature level
 - **80 K**
 - Ichiros at KEK
- These changes need a cost-benefit analysis
 - Driving argument for inside motor was cost
- In addition, a model for module repair in ILC needed
 - All these options need to warm up the machine (except for outside motor) to repair
 - As this is the critical time scale to which everything else is short TESLA philosophy was to swap broken modules with spare ones
 - Repair done outside of the tunnel

Mandatory changes: Magnetic shield

- Baseline is outside helium vessel
- Performance demonstrated
 - Achieve Q₀ >10¹⁰ regularly

Optional changes: Magnetic shield

- Inside Helium vessel
 - TESLA-type at KEK

- Main issue is cost
- Performance is as important
- Time available is short

- But many options are poorly justified
 - Thorough analysis of cost–benefit has not been done in many cases
 - e.g. no thorough study available on large-grain material, but very rough estimates
 - Understanding of regional cost differences in RDR is needed as this has driven optional developments
 - e.g. tank material is a candidate in this category

Performance is as important

- We (the ILC project) ...
 - have to agree on components test
 - need to get a systematic overview of what tests are needed to make us comfortable with design changes
 - Cavity shape changes need beamtest
 - Cavity material changes need 'only' performance test

- Depending on the impact of the options testing might exceed EDR timeline
 - certainly true for the ILC module
- How many tests?
 - How many couplers would you like to built to be sure of the cost reductions you think of?

- XFEL is baseline in many cases
 - Performance tested up to ILC levels for cavities, couplers and tuners
- Need to establish common set of criteria for making an option a candidate for ILC
 - Thorough cost-benefit analysis must be first in line
 - Agreed-upon tests are needed ('fair')
 - A realistic timeline provided by proponent is needed to assess what could be achieved by the EDR
 - also could decide certain demonstrations being postponed beyond EDR