

Cavity R&D Activities in US

Review of RDR work and plans for EDR

Shekhar Mishra Fermilab/ART

Outline

- Technical Goals (Including Dressed Cavity)
- FY06-07 Activities
 - Cavity Fabrication (1.3 and 3.9 GHz)
 - Cavity Processing and Testing
 - Jlab
 - Cornell
 - ANL/FNAL
 - Cavity Yield improvement
 - Infrastructure Development
 - Industrial Development
- Plans for FY08-09
 - Infrastructure Development
- Summary

-ilc

Technical Goals

- Demonstrate the basic ILC Main Linac technology
 - Develop cavity processing parameters for a reproducible cavity gradient of 35 MV/m; improve the yield of 9-cell cavities for gradient of 35 MV/m in vertical tests (S0.1).
 - Carry out parallel/coupled R&D on cavity material, fabrication, and processing to identify paths to success (S0.2).
 - Assemble and test several cryomodules with average gradient > 31.5 MV/m (S1).
 - Build and test one or more ILC rf units at ILC beam parameters, high gradient, and full pulse rep rate (S2.1).
 - Carry out Key Alternate Design R&D item ("forward looking" approach)
 - Re-entrant, Low Loss, End Group, etc.
 - Improve ILC performance, reduce cost
- Install Sufficient Infrastructure to support these activities

-ilC

US Cavity

- Number of cavity goal: Fabricate 1/3 of the Cavity needed for the Global S0 program, with focus on getting US Industry involved and qualified
 - FY05
 - 4 Cavities from ACCEL (Type-III+ length)
 - FY06
 - 4 Cavities from AES (Type-III+ length)
 - 4 Jlab (2 Fine, 2 Large)
 - 9 Cavities from ACCEL (To be delivered by 12/31/07)
 - 6 Cavities from AES (To be delivered by 12/31/07)
 - FY07
 - 12 Cavities (ACCEL) (Mid FY08)
 - 12 1-cell Cavities (AES & ACCEL) (AES 9/18/07, ACCEL 12/31)
 - FY08-09
 - 24 & 60 Cavities (Planned)

Most of these cavities are fine grain Nb and ILC design

AES - 001

IC Cavity Fabrication & Industry Development

- As a first step toward developing additional US vendors for cavity fabrication, a program has been funded with Roark Engineering.
 - Roark is building three 3.9 GHz single-cell cavities to develop expertise in niobium machining, forming and EB welding.
 - Tooling for forming the half-cells was provided by FNAL.
 - Final welding of the three cavities is in progress and delivery is expected by the end of September.
- A "Teaming Agreement" between Niowave and Roark Engineering was formed recently.
 - Both firms will share expertise and facilities.
 - Each will fabricate three 1.3 GHz single-cell cavities.
 - In the second phase of this effort the Niowave/Roark collaboration would fabricate 1.3 GHz ILC style nine-cell cavities.
 - This phase will be contingent upon first phase results.

PAVAC: Canadian Cavity Vendor

Who is PAVAC?

- A Canadian Company located in Richmond B.C.
- TRIUMF is presently prototyping two bulk niobium quarter wave cavities with PAVAC

The LASTRON technology services and systems offered for

- Electron Beam Welding
- Pulsed Electron Beam Drilling and Surface-Micro Machining
- Pulsed Electron Beam Coating (PEB-PVD)
- Rapid Manufacturing (RM)
- Electron Beam Flue Gas Cleaning (EBFGT)

Our new 10,000 + square feet facility at: 12371 Horseshoe Way Richmond, B.C., V7A 4X6

In a collaboration with Fermilab and TRIUMF, PAVAC will Fabricate ILC cavities.

Fermilab 3.9 GHz Status

Progress to Date

- Cavity fabrication done at Fermilab and JLab with help from DESY
- 6 cavities built
- 2 more complete in next two weeks
- 4 cavities through vertical test
 - All have achieved gradients in excess of 20 MV/m
 - Q is within specifications
 - Generally low field emission
- Horizontal Testing when helium vessels are available
 - Bellows welding qualified
 - First vessel expected this month

US SRF Infrastructure Strength

- Cavity Processing and Vertical Testing R&D Facility
 - Jlab (30 FY07, 40 FY08, 50 FY09) cycles/yr
 - ANL/FNAL (10-20 FY07, 30 FY08, 40 FY09) cycles/yr
 - Cornell 12 cycles/yr
 - VTS @FNAL 45 cycles/yr (08)
- Horizontal Test Stand
 - FNAL 24 cavities/yr
- Cavity Dressing and Cryomodule Assembly – FNAL 4/yr (FY07)
- Limited, but developing cavity fabrication capability in US industry

Jlab Infrastructure

Jlab: ILC Electro-polish and Vertical Test

Production Like Process Established

- 32 Vertical RF Test completed
- 8 Bulk chemistries and 24 final chemistries completed
- 2 Cavities qualified for S0 program
 - A7 had reached 42MV/m on 2nd Qualify Test
- Rate of ~30 processes and test cycle/year achieved
- Current Issues
 - Production rate is limited by tooling sets and facility availability

Cavity Tested

- S35, commissioning EP facility
- C22, FNAL HTS
- A6, A7, as built by ACCEL
- A8, previously studied at Cornell
- AES1, AES2, AES3, AES4, as built by AES
- ICHIRO#5

-ilc

JLAB Cavity Procedure

- Field flatness tuning
- Bulk EP (nominal 150 um)
- US cleaning 1 hour
- Hydrogen out-gassing 600C 10 hours
- Field flatness tuning
- Light EP (nominal 20 um)
- US cleaning 1 hour
- HPR 12 hours
- Cass-10 area drying 8 hours
- Clean room assembly
- Second HPR 12 hours
- Final clean room assembly
- Pump down and leak check
- Low temperature bake 120C 48 hours
- RF test at 2K

X 3 or 4

S0 cavities previously tested at other labs: First check field flatness, then baseline RF test without EP, then loop

Results of Accel Cavity: A7

- Test 1: EP 172 um, quench
- Test 2: + EP 26 um, quench
- Test 3: + EP 26 um, quench
- Test 4: + EP 27 um, quench

Results of Accel Cavity: A6

Emax (MV/m)

- A6 Vertical Qualify Test Data
- Test 1: EP 187 um, Q-slope
 - Test 2: + EP 26 um, quench
 - Test 3: + EP 26 um, quench
 - Test 4: + EP 26 um, field emission limited

A6 Vertical Qualify Tests

Date

Results of AES Cavity: AES1

- Test 1: EP 213 um, quench
- Test 2: + EP 23 um, quench
- Test 3: + EP 16 um, quench
- Test 4: + EP 17 um, quench
- Pass-band: cell 3/7 quenching
- Ship to FNAL under vacuum after additional HPR
- First FNAL result consistent with last JLAB result

Results of AES Cavity: AES2

• EP 164 um

- Cold leak in flange
- Warm-up, repair leak
- HPR, no EP, first test, low field Q 4E10, quench
- Pass-band: cell 4,5,6, and possibly 2,8 quenching
- Test 2: + EP 26 um, quench, lots of X-rays

Q0 - test 1

ilc

AES3

Eacc (MV/m)

Test 3 & 4 goal: Locate defect by thermometry

Test 4 strange Q(Ea), some X-ray Discoloration (Nb oxide) on inner surface of beam tube (field-probe side), caused by HPR water jets

- Test 1: EP 177 um, quench
- Test 2: + EP 23 um, quench
- Pass-band: cell 4/6 quenching
- Thermometry results later
- Test 3: no EP, HPR, quench
- Test 4: no EP, HPR, no quench

AES4

- Test 1: EP 221 um, spontaneous FE activation at 28 MV/m
- Test 2: + EP 36 um, limited by cable breakdown
- Test 3: + EP 20 um, limited by strong FE

AES4 has not quenched, Recent processing has Significant FE

8

Defect Locating in AES3

- Pass-band meas. determine cell pair (cell #4 & #6)
- Primary focus is EBW
- First thermometry test: 8 thermometers attached to equator EBW, 90 degree apart, started from weld overlap, 4 on each cell
- Singles out cell #6 (from field probe port side)
- Defect location not EBW overlap, suspected region determined to 1/8 of the cell
- Second thermometry test: 16 thermometers attached to suspected region
- Next step: long-distance microscope inspection after defect located

IC Defect Locating in AES3 (cont.)

Jlab: Max. Gradient Summary

ΪĹ

Gradient Limiting Statistics

 BCP, HPR, and variable coupling test systems upgraded for 9-cell preparation and testing

Vertical Test Variable Coupler

Cornell - 2006 - Vertical EP Started

 Possible benefits VEP Simpler

11L

- No large acid barrel, no plumbing, valves, no acid heat exchanger...
- Possible disadvantage
 - more exposure to H
 - 600 800 C, H
 degassing required
 more often?

Figure 1. Cathode and stir-tube assembly for one cell. All other cells are identical.

9/19/2007

Cornell: ACCEL-8 BCP and EP tests

Mistake in EP ACCEL-8

Confirm Cornell Q-slope Results of A8 At Jlab

- Field un-flatness 11% as received
- Tuned to < 5%
- Baseline test: HPR only, no EP, no 120C bake
- Results consistent with last result at Cornell
- Q-slope (off-normal EP, see Cornell report)
- Test 2: + EP 20 um, 20 MV/m quench, lots of Xrays

8

Cornell : EP on ACCEL-9 (Aug. 07)

- Learn from our mistakes with single cell test:
- Then use correct temperature and stirring speed

Cornell : 2nd Test A9 (Sept 07)

ACCEL9 2007-09-15 Cornell SRF

Re-Entrant 9-cell, First Test July 07

³¹

Alternate R&D, Single Cell Results 60mm-Aperture Re-Entrant Cavity - Best Eacc = 59 MV/m

Re-entrant Shape Cavity

Cornell 60 mm aperture re-entrant cavity LR1-3 March 14, 2007

RE-LR1-3

- <u>Two</u> main types of particles captured during EP,
 - S and niobium-oxide
 - Traces of AI also found with Auger, as expected due to AI cathode
- S particles dissolve in ethanol rinse but leave an imprint
- Oxide particles dissolve in HF rinse
 - But did not dissolve in EP !

S-Particle

Oxide Particle

Typical S particles Deposited on Nb Surface During EP

After Ethanol Rinse

Single Cell Large Grain

Large Grain Nb from China

liL

IC No Heating At Grain Boundaries

ic Summary Slide of Cornell Work

- Infrastructure installed for 9-cells:
 - BCP, HPR, Variable Coupler Test-stand, Vertical EP ILC :

ACCEL 5 (loaner), ACCEL- 8, ACCEL-9,

Best results : 24 MV/m, 30 MV/m, (27 MV/m, 26 MV/m)

2 S0 Cavities

- All limited by quench
- Re-entrant 9-cell (Fabricated by AES)
 - First test, 14 MV/m, quench limit from machine damage area
 - Best cell reached 25 MV/m
- Single Cell Research (Collaboration with KEK)
 - Re-entrant 60 mm aperture World record 59 MV/m !
 - Ninxia Large Grain with thermometry
 - Proved that Grain boundaries are NOT responsible for Q-slope
 - Nearly oxide-free cavities (400 C bake)
 - Oxygen is likely NOT responsible for Q-slope
- Surface Studies
 - S and oxide particles found with EP
 - Ethanol rinse dissolves S particle

SCSPF at ANL Overview

Goal: Establish a new and complete single cavity processing & assembly facility

20 m

EP at ANL

- EP Design Specification Done
- EP Engineering Design Done
- EP System/component procurement Done
- EP Design Review Done
- EP system assembly 95% complete
- To do:
- Finish cathode loader
- First Procedure:
- August 13—completed!

IIL

BCP System Status

Dilute Waste Neutralization System

HPR @ ANL

- Design borrows from Cornell.
- System uses existing clean room and water plant at Argonne Lab.
- Clean room upgrades provide class 10 zone for HPR.
- Operational January 2008.
- Cavity moves vertically
 - Bosch-Rexroth slide with class 100 certification
- Wand rotates
 - 0.02micron filtration after swivel joint
- 1500psi / 100bar
 - LEWA diaphragm pump

ilc

Fermilab: Vertical Cavity Test Facility

ilr

VCTF 1st 1-cell test

- First high-power single-cell cavity test July 24, 2007
- □ Large-grain niobium cavity borrowed from JLab
 - Tesla-style shape (straight end tubes)
- Good cavity performance, comparable to performance at JLab
 - quench at 27 MV/m accompanied by field emission
- First try at sending an evacuated cavity from JLab to Fermilab
 - important for cavity and process qualification

VCTF 1st 9-cell cavity test

First 9-cell test September 7, 2007

AES01 cavity

- Tested at JLab for AES vendor qualification
- Borrowed for VCTF commissioning
- Tesla-style shape, with normal endgroup
- □ Mediocre cavity performance, comparable to performance at JLab
 - O Quench at 16 MV/m without field emission
- Second try at sending an evacuated cavity from JLab to Fermilab
 - Important for cavity and process qualification needs work

VCTF Summary/Plans

- □ Vertical Cavity Test Facility with one Vertical Test Stand now operational
 - First high-power 9-cell cavity test complete and successful
 - Commissioning activities ongoing
 - Understand the cryostat/cryosystem performance and capability with the thermal load
 - Complete magnetic shielding inner Cryoperm shield not installed yet degrades Q₀
 - **Train personnel**
 - Will establish Fermilab as an ILC cavity testing facility in FY08
- Develop Fermilab SRF expertise & advance Fermilab role in SRF technology
 - Study cavity characteristics for vendor qualification, understanding cavity processing
 - Passband mode measurements limited by fixed RF input coupler
 - \Box Thermometry for quench location flexible system for cavity R&D with $\mathcal{C}(10)$ sensors available
 - Develop cavity diagnostic instrumentation now with increased priority
 - □ 9-cell thermometry comprehensive grid measuring all 9 cells at once (10000 sensors!)
 - Variable RF input coupler
 - Apply advances to new projects
 - Collaborate with university groups & other labs
 - Accommodate visitors with user-friendly facility
- Planned upgrades based on analysis of existing system capability & dependent on funding
 - Inputs: Considerable experience from Fermilab Magnet Test Facility, and cavity test operations information from other labs
 - FY08 plan: Cryogenic system and infrastructure upgrade reduce interference with magnet test program and improve cryogenic system reliability
 - **•** FY09 plan: Additional cryostats higher throughput

ic Fermilab: Horizontal Test Stand

- Cryogenically commissioned in FEB-2007
- Installation of cavity "C22" in MAY-2007
- Several cool down attempts foiled due to leaks
 - Found and addressed
- Successful in-situ conditioning of input coupler at room temperature with high power pulsed RF

ilc

FNAL: 1-cell Processing and Testing Facility

• Goals:

- Fast turnover processing and testing of 1-cell cavities
- ILC cavity processing parameter development
- Address, explore and incorporate other cavity research issues (Advanced R&D)
- Collaborate with other labs in cavity R&D

Electro-polishing at ABLE

HPR at A0

T-Map 1.3GHz Sensor Card

LANL: Improve Cavity Production Yield

- LANL is currently focusing on the following activities.
 - Develop a 9-cell cavity temperature mapping system to localize the problem area(s).
 - Re-start and modify existing RF measurement facility for 1.3 GHz 9-cell cavities.
- A fixed-type T-mapping system that covers the cavity every 10 degrees will be completed around 20 September 2007.
 - The sensor is an Allen-Bradley100-ohm resistor, and its shape is similar to the one developed at Cornell. LANL, in collaboration with a company, developed a way to produce a number of sensors efficiently. (~5000 sensors will be used.)

LANL 9-cell T-map System

- each PCB covers 3 cells
- 108 boards cover the cavity every 10 degrees
 expected scanning time
- is ~2 seconds.

ilc

ILC Americas Cavity and Cryomodule Work Packages

- ART Nomenclature
 - The Main Linac Cavity and Cryomodule plan: WBS X.9
 - WBS 1.9.1 Management WBS Level 2 Manager:
 - Shekhar Mishra, Hasan Padamsee, John Mammosser and Mike Kelly
 - WBS 2.9.1 Main Linac EDR: Cavity and Cryomodule
 - WBS 3.9.1 Cavity Fabrication
 - WBS 3.9.2 Cavity QC and Tuning
 - WBS 3.9.3 Cavity Processing and Vertical Testing
 - WBS 3.9.4 Single Cell Processing R&D
 - WBS 3.9.5 Cavity Horizontal Test
 - WBS 3.9.6 ACD Shape and Material
 - WBS 3.9.7 Cavity Failure and improvement of Manufacturing Yield
 - WBS 3.9.8 R&D on Cavity Processing
 - WBS 3.9.9 ILC Cryomodule
 - WBS 3.9.10 SCRF Material Research
 - WBS 5.9.2 Cavity HPR Systems
 - WBS 5.9.3 Upgrade to the Processing Facility
 - WBS 5.9.4 ILCTA_NML RF Unit Test Infrastructure
 - WBS 7.9.1 Industrial Development
 - WBS 7.9.2 Cavity and Cryomodule Processing and Testing Infrastructure

Cavity Processing and Testing

- The present US cavity R&D is using
 - Distributed Cavity Processing and testing infrastructure
 - This is an ideal way to get started with very limited resources to make significant progress towards the ILC R&D goals.
- The production of high-performance SRF cavities will require state-of-the-art surface preparation.
- We are proposing build additional facility at Fermilab, We already have
 - Existing infrastructure and significant engineering resources
 - Low and High Power Cavity Test Facilities
 - Cryomodule Assembly Facility
 - Cryomodule Test Facility With and Without Beam
- An integrated facility will be needed
 - For significant improvement of the current preparation
 - Steps towards an industrial production-like level
 - A large enough throughput (~100 cavities/yr)

Needed US Laboratories Capacity

Program	FY07	FY08	FY09	FY10	Capacity Needed/yr
	llah-30	llab-40	llab-10	llab-10	Syr rio
(EP, HPR, Bake) Cycles/yr	Cornell-10	Cornell-10 ANL-40	Cornell-10 ANL-40 Fermilab-20	Cornell-10 ANL-40 Fermilab-100	200
Vertical Testing	Jlab-30 Cornell-10 Fermilab-20	Jlab-40 Cornell-10 Fermilab-75	Jlab-40 Cornell-10 Fermilab-75	Jlab-40 Cornell-10 Fermilab-200	200
Horizontal Testing	Fermilab-6	Fermilab-24	Fermilab-24	Fermilab-72	72
Cryomodule Assembly	Fermilab-1	Fermilab-4	Fermilab-8	Fermilab-12	12
Cryomodule Test	Fermilab: ILCTA_NML	Fermilab: ILCTA_NML	Fermilab: ILCTA_NML	Fermilab: ILCTA_NML CMTS	12

Cavity Fabrication

- Increased cavity fabrication R&D and training US industry
 - Electron Beam Welder
 - Eddy Current Scanner
- Automated Cavity Tuning
 - 100+ Cavity/yr (by FY09)
- Cavity Processing Facility (Pre-Production Facility, existing technology with industry, modular and redundancy)
 - 100+ Cycles/yr (by FY09)
- Vertical Testing
 - Additional 100+ Cavity/yr (by FY09)
- Horizontal Test Stand
 - Additional 48 Test/yr (Maximum US Capacity needed)
- Cryomodule Assembly
 - 1 per month
- Material R&D

Schematic of Cavity Processing Facility

Figure 2: Sketch of the cavity preparation infrastructure.

European Infrastructure Proposal

Cavity Processing Facility \$18.9M

Global Design Effort

Proposed: Vertical Test Stand 2 & 3

- To increase the capacity of the VTS
 - Upgrade the VTS-1 for 2 cavity operation (~75 cy/yr)
 - Add 2 more VTS pits (VTS-2 and VTS-3) (~200 cy/yr)
 - Upgrade the cryogenic infrastructure (decouple from superconducting Magnet test)
 - Upgrade the cavity staging area
- To support cavity R&D: Field emission studies and Quench Location

Global Design Effort

MSU & LANL Work Package

MSU R&D Program

- Cavity Autopsy to understand fabrication errors
- Single Cell Cavity (R&D) to explore improved treatments
- Advanced Cavity and Material Science studies (R&D)

• MSU SRF Infrastructure

- Upgrade ultra-pure water and high pressure rinse
- Nine-cell structure vertical test dewar

LANL R&D Program

- Cavity Autopsy to identify fabrication errors for low gradient cavities

LANL SRF Infrastructure

- Re establish cavity testing at LANL
- 1.3 GHz Power Amplifier
- Thermometry

Cornell & Jlab Work Package

Cornell ILC R&D

- Processing and Vertical Testing of 9 Cell to qualify high gradient cavities
 - Process 12 cy/yr in FY08
- Single Cell R&D with thermometry to improve processing, study Q-slope...
- High Pulse Power R&D to explore gradient recovery from vacuum accidents
- ACD: Reentrant Cavity Fabrication and Processing
- Jlab ILC R&D
 - Processing and Vertical Testing of 9 Cell Cavity for S0, S1
 - Process 30 cy/yr in FY08
 - Single Cell R&D to improve the Processing
 - Field Emission studies for tracking the contamination
 - ACD: LL Shape Cavities, Large Grain and Single Crystal

- Electropolish S0.2 ILC cavities
 - 30-50 Cy/yr
 - Installation of a PLC-based control system for EP
- Single Cell Cavity R&D to qualify treatment
- ANL and Fermilab will work together in cavity processing and testing.

- Order 24 cavities
- Heat treat, tune, HPR and Vertical test: 30-50 cycles/ EP at Argonne
- Horizontal test 8 "good" cavities
- Work with LANL and MSU to supply thermometry diagnostics for failed cavities
- Single cell R&D and Materials R&D collaboration
- Continue Testing First cryomodule (type III) assembled in 07 from DESY supplied cavities
- Assemble and Test cryomodule #2 (Type III)
- Order parts for 2 Cryomodule Gen IV

Fermilab Work Package 08

- Continue Next Generation CM design, manufacturability, transportability, cost reduction
- Cavity Tuning Machine
- Involve industry in fabrication of Dress Cavities activities
- Start Next Generation and Pre-Production cavity processing
- Vertical Test Stand to increase Capacity
- RF unit infrastructure

Development of Industry

Cryomodule Process	Starts with		Transitions to		
Cavity Fabrication	Lab/Industry Collaboration		Industry		
Cavity Processing	Lab/Industry Collaboration		Industry		
Low Power Test (VTS)	Laboratory		Laboratory	\exists	\langle
Cavity Dressing	Lab/Industry Collaboration	>	Industry		
High Power Test (HTS)	Laboratory	>	Laboratory		
Cryomodule Fabrication	Lab/Industry Collaboration		Industry		
↓ Cryomodule Test (CTS)	Laboratory		Laboratory		

The technology for cavity fabrication & processing, cavity dressing and cryomodule fabrication will be transferred to Industry.

Cryogenic testing of cavities and cryomodules along with beam tests will remain the responsibility of US laboratories.

- We plan to work with US industry technology transfer to Fabricate, Process, Dress and test cavity
 - The qualified US vendor will fabricate Cavity, Coupler, He Vessel, Tuner in Industry
 - The cavity vendor could work with a processing industry and Fermilab to process and vertical test the cavity
 - The coupler and He vessel industry could work with Fermilab in dressing and horizontal testing of cavities.

US Study: Cost Drivers

PERCENT OF CRYOMODULE COST

•We are in process of developing cost reduction and value engineering proposal with LCFOA

ILC Americas WP Plan: FY08-FY09 Summary

FY05	FY06	FY07	FY08	FY09
4	23	16	30	60
	1	1	2	2
		1	2	2
		30	40	50
		12	12	12
		20	50	50
				50
			4	4
			4	4
				-
	х	х	х	х
	x	x	x	x
			x	x
		х	Ŷ	â
	с			
	č			
	•	C		
		č		
		•	c	
			Ŭ	
		C		
		Ū	DC	с
		C	20	Ŭ
				DC
		C		50
		ň	DC	C
		5	00	č
			10	
				10
				**
	FY05 4	FY05 FY06 4 23 1 X X C C	FY05 FY06 FY07 4 23 16 1 1 1 1 30 12 20 X X X X X X C C C C C C C C D D	FY05 FY06 FY07 FY08 4 23 16 30 1 1 2 30 40 12 20 20 50 4 4 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X C C C DC C DC C DC C DC IC IC

X: Planned, C: Commissioned, D: Design, DC: Design and Construct, IC: Install and Commission

Summary

- We have made considerable progress in building US infrastructure for cavity fabrication, processing and testing.
- We are ready to play a significant role in cavity and cryomodule R&D
 - Cavity Processing (> 30Mv/m)
 - Cryomodule design and fabrication
- The initial plan for FY08-09 is in place
 - This uses the developed strength of the US laboratories in cavity processing
 - We are developing significant infrastructure at Fermilab
 - We will work with US industry
- International Collaboration