

Photocathodes for Polarized Beams

Takashi Maruyama SLAC

ILC e- source KOM, September 24-25, 2007

1

Baseline design: strained layer superlattice GaAs/GaAsP Polarization ~ 85 - 90 % ,QE 1% maximum, 0.3-0.5% routinely

High gradient p-doping increases QE and reduces surface charge limit:

 $5 \times 10^{19} \text{ cm}^{-3} \rightarrow 5 \times 10^{17} \text{ cm}^{-3}$

Surface Charge Limit

Surface charge limit has not been studied under the ILC conditions

No charge limit in < 300 ns.

Poelker (PSTP07)

Aulenbacher (Spin06)

S. Tanaka et al. Surface Review and Letters, 9, 1297 (2002)

ILC Train Extraction

- Need to demonstrate ILC train extraction as soon as possible.
- ILC laser development should be highest priority.

ILC train may look like this.

- Cathode needs high temperature (~600° C) heatcleaning to achieve high QE.
 - Dopant diffusion \rightarrow surface charge limit
 - Try carbon doping
 - Surface damage/surface states \rightarrow surface charge limit
- Lower heat-cleaning temperature to ~450° C and achieve high QE
 - Atomic hydrogen cleaning

- ILC laser may not have enough energy.
 - 5 μ J/pulse is tough.
- DBR was first introduced by Nagoya group.
- ×10 QE enhancement has been achieved.
- Structure gets more complex, and matching pol max and QE max is not quite reproducible.

Bias enhancement of QE

- QE enhancement is possible when the cathode front surface is positively biased.
- Polarization increases as the electron drift time gets shorter.
- External bias
 - SBIR with Saxet Surface Science.
- Internal bias
 - Gradient doping
 - W. Zhen et al., JJAP 38, L41 (1999) (Photoluminescence study)
 - Gradient composition
 - SBIR Phase I with SVT

IC Polarization improvements

- GaAsP/GaAs strained superlattice
 - Superlattice parameter optimization
 - Doping profile optimization
- New structures
 - InAIGaAs/AIGaAs strained superlattice
 - In collaboration with St. Petersburg group.
 - AIGaAsSb/AIGaAs strained superlattice
 - SBIR Phase I with SVT Associates

Spectra of electron emission: Polarization P and Quantum Efficiency QE

Wafer growers

- SLC single-strained wafers
 - All grown at Spire/Bandwidth Semiconductors
 - Wafer quality varied, each wafer characterized, and good wafers selected.
- GaAsP/GaAs strained superlattice
 - Nagoya University
 - SVT Associates
- Need to find wafer grower
 - SVT Associates may not be in business for long time.
 - Find University group?
 - Photocathode wafers are not industry standard.
 - Takes time to optimize growth

- What is grown is not always what is designed.
- Polarization and QE alone do not characterize the structure.
- Ability to characterize wafers is important.

13

- Photoluminescence
- X-ray diffraction
- Surface analyses: XPS, EDX, SIMS