

1) Source Issues 2) SLAC's ITF

Jym Clendenin

SLAC

Present Source Parameters Parameter

Parameter	Symbol	Value	Unit				
Electrons per micro bunch at source	n _e	3*10 ¹⁰	Number				
Number of micro bunches	N _e	2820 Num					
Micro bunch repetition rate	F _{ub}	F _{ub} 3					
Macro bunch repetition rate	F _{mb}	F _{mb} 5					
Micro bunch charge at source	С	5	nC				
Micro bunch length at source	Δt	1	ns				
Peak current in µbunch at source	I _{avg}	5	A				
Energy stability	S	< 5	% rms				
Electron polarization	Electron polarization Pe 90						
Photocathode quantum efficiency	QE	0.5	%				
Drive laser wavelength	λ	760-800	nm				
Micro pulse laser energy	E	5-10	μJ				

Minimum bunch length at entrance to first SHB using GPT (Brachmann)

Charge = 6.4 nC

Δt @z=0 m	Δt @z=1.5 m (ps)				
(ps)	120 kV	200 kV	500 kV		
2000	2172	2000			
1000	1333	1000			
500	1333	766	500		
250	1562	780	312		
125	1722	833	250		

•SHB1: 216 MHz, $\lambda/4$ = 1157 ns

Present ILC parameters: 140-160 kV, 5 nC, 1 ns, 1.0 m drift
Detailed engineering design for drift from gun to SHB1 urgently needed to determine minimum drift distance!

• • • Gun voltage

• Affects space charge limit (Child law) $j_0 = \left(2.33 \times 10^{-6}\right) V_0^{3/2} / d^2$

and

$$j'_0 = (1.3 \times 10^{-10}) E_{\text{max}}^2 / V_0^{\frac{1}{2}}$$

where j, V, d, E in A/cm², volts, cm, V/m

- Transit time of single electron from cathode to anode is ~0.3 ns (assuming d=3 cm and β ~0.3)
- If r=1 cm (SLC cathode size), then $j=1.6 \text{ A/cm}^2$

• • • Gun voltage limitations ILC Child law

					I					
9	∆ †	I	r	j	r²∆t	V	d	j o	E _{max}	jo
(nC)	(ns)	(A)	(cm)	(A/cm ²)	(cm ² ns)	(kV)	(cm)	(A/cm ²)	(MV/m)	(A/cm ²)
5	1	5	1	1.6	1	140	3	14	8	22
						200		23		19
						350		53		14
			0.5	6.4	0.25	1	Note: SL(, Nagoy	a, JLab-	FEL
			0.3	17.8	0.09	(operate a	† <i>E</i> =8 M	V/m	
	0.5	10	1	3.2	0.5					
			0.5	12.8	0.12					
			0.3	35.5	0.045					

Conclusion: keep $r^2 \Delta t > 0.25$

• • • Gun voltage also affects surface charge limit

- With gradient doping, limit not yet determined for pulse beams:
 - 5.5 A/cm² measured @ SLAC for 780 nm, 75 ns pulse
 - 9.7 A/cm² @ Nagoya for 780 nm, 30 ps
- But nonlinear effects for <0.1 A/cm² in cw beams @JLab and elsewhere
- Thus beam size and bunch length at cathode may be required to be large for this reason alone

Cathode 1/e lifetime For 5 nC pulses, <I>=75 μA

- o Lifetime for 100 μ A beam with 0.5 mm dia. laser spot
 - 100-200 $C \rightarrow 1 \times 10^5 C/cm^2$ (Poelker)
 - 15-30 days for 75 μA
- Lifetime may not scale with laser spot size
 - Conservative estimate for ILC: 60 days
- Reactivation required

• • • Emittance

- Initial emittance determined by beam size and bunch length (r^2Dt)
- Emittance growth determined by gun voltage
- Transport efficiency of beam to subharmonic bunchers affected by beam emittance
- But emittance of bunched beam mostly independent of upstream emittance

• • • Two-Gun Configuration

- How to manage?
 - Complete instrumentation for both guns (including Mott polarimeters?)
 - Switch guns regularly (every few weeks?)—may make common Mott feasible
 - Need high quality bending magnet that can be rapidly standardized
- Provision for rapid gun replacement (≤8 h) still important
- Remote cesiation (cathode retracted) and remote activation (of working cathode) important
 - Partial retraction for simple cesiation
 - Vacuum isolation for activation

Simulations

- Presently use EGun to model beam in gun
 - EGun has no time dependence
- For gun to accelerator use GPT
- Need 3-D PIC simulations for gun, possibly also for gun to SHB region
- Also need parameter optimization à la Bazarov and Sinclair (PRST-AB, 2005)

General Layout of ITF

	1	Pump Lasers	532 nm	1.8 W	30 mJ	60 Hz
Presently	2	YAG-Ti	750-900 nm	12 mW	200 μJ	60 Hz
available lasers	3	Flash-Ti	750-900 nm	12 W	200 mJ	60 Hz
	4	Diode (IIIb)	750 nm	<100 mW		CW
	5	Diode (IIIb)	790 nm	<100 mW		CW
	6	Diode (IIIb)	833 nm	< 100 mW		CW

Artist's View of ITF System

• • • Beamline in Room 109 (GTL)

Rear of gun with "clamshell" (corona shield) open revealing isolation valves, prep chamber, cathode support bellows, cathode tray bellows, and optically linked ion pump, cathode cooling lines

Drive mechanism for cathode support tube (shown here in "inserted" state) installed

 $\bullet \bullet \bullet$

Looking from gun toward electrostatic bend and (on right) the Mott polarimeter

Plans for ITF

- Immediate plan is to measure surface charge limit for highly-strained AlInGaAs/AlGaAs photocathodes recently grown in St. Petersburg
- Measure Pe and SCL for other R&D photocathodes
- Longer term goal is to demonstrate the ILC pulse train and determine surface charge effects
- System is available for other ILC source R&D projects
 - Test SLC gun with Mo-Ti electrodes?
 - Test other types of guns, such as the SLAC inverted structure gun (which is in storage under vacuum)?