

e- Source RDR- Conventional Facility & Siting Overview

Fred Asiri/SLAC

Current Status

~31 Km

Schematic Layout - Plan View of the 500 GeV Machine

- Planning for EDR
 - Prepare Engineering Project Description Document
 - Defining physics requirement in RDR to engineering requirements
 - Defining boundaries, interfaces, utility needs and functional environment for each subsystem.

e- source kick-off meeting

Current Status Central Area

Current Status CF&S

Total CFS Costs and Statistics

Expected Final Contract Costs

- General Considerations
 - Local Geology will Determine the Actual Shape of the Cavern
 - A "Dimensional Envelope" Needs to be Established for Each major component of e- source system for during;
 - Installation & Maintenance
 - Commissioning & operation
 - "Dimensional Envelope" Should Include all Supporting Utility Requirements
 - Exiting Requirements Need to be Revisited from Installation, Maintenance and Operation Point of View
- Evolving Constraints and Criteria
 - Life Safety Egress Requirements
 - Construction Configuration Requirements
 - Operational Configuration Requirements
- Identification of Clear Boundaries Between CFS and Each Major Components

e- source kick-off meeting

What's included

- Cooling Towers for Process Water/LCW (the chilled water is separate system)
- Pumps, surface and underground
- Heat Exchanger, LCW skid
- Piping, insulation, valves, controls and other process water accessories

What was NOT included

• Cooling tower system for Cryo

Simplified schematic based on Main Linac RF @ Shaft 7

RDR Process Water: Heat Load Basis- ML RF

<u>Nov 27b 2006</u>											
WATER AND AIR HEAT LOAD (all LCW) and 9-8-9 ML											
				То	Low Conductivity Water			to Chilled Water	keith Jobe load to air Nov 22 06		
Components	Total Heat Load (KW)	Averag e Heat Load (KW)	Heat Load to Water (KW)	Supply Temp (variatio n) (C)	Delta Tempe rature (C delta)	Maximu m Allowab le Pressur e (Bar)	Typical (water) pressure drop Bar	Acceptabl e Temp Variation delta C	Heat Load to Water (KW)	Power fractio n to Tunnel Air (o- 1)	Power to Tunnel Air (KW)
RF Components			-								
RF Charging Supply 34.5 Kv AC-8KV DC	4.0	4.0	2.8	40	40	18	8	10	0	0.3	1.2
Switching power supply 4kV 50kW	7.5	7.5	4.5	35	14	13	8	10	0	0.4	3.0
Modulator	7.5	7.5	4.5			28.82			0	0.4	3.0
Pulse Transformer	1.0	1.0	0.7						0	0.3	0.3
Klystron Socket Tank / Gun	1.0	1.0	o.8						0	0.2	0.2
Klystron Focusing Coil (Solen	4.0	4.0	3.6						0	0.1	0.4
Klystron Collector Klystron Body Klystron Windows	58.9	47.2	45.8 0.0 0.0	*35> *35> *35>			2 5 1	+ - 2.5 C	0 0 0	0.0	1.4
Relay Racks (Instrument Racks	10.0	10.0	0.0	N/A	N/A	N/A	N/A	None	11.5	-0.2	-1.5
Circulators, Attenuators & Dun	42.3	34.0	32.3					+ - 2.5 C	0	0.1	1.7
Waveguide	3.9	3.9	3.5					+ - 2.5 C	0	0.1	0.4
Total RF			100						11.50		26.07
Total Heat load to Dirty Water (per RF)											
Heat load to Chilled water (per RF) 37.6 cooled by chilled water											
Heat load to LCW (per RF)			100.0	cooled by low conductivity water							

e- source kick-off meeting

RDR Process Water: Heat Load Basis- Total Loads

Thermal Loads used for e- Source

Area System	LCW	Chilled Water	Total
SOURCES e-	2.880	1.420	4.300
SOURCES e+	17.480	5.330	22.810
DR e-	8.838	0.924	9.762
DR e+	8.838	0.924	9.762
RTML	9.254	1.335	10.589
MAIN LINAC	56.000	21.056	77.056
BDS	10.290	0.982	11.272
DUMPS	36.000	0.000	36.000
	149.58	31.971	182

Air treatment Design Basis

- The design temperature for service and beam tunnels is 85-90F (29-32C). The low "heat to air" load is mainly absorbed by the tunnel wall. Air mixing fans will be used for temperature stability, possibly using process water for minor temperature adjustment.
- Used the basis that airflow could pass from the service tunnel to the beam tunnel through fire/smoke/ODH/radiation protected passages between the tunnels. This assumes that radiation/oxygen deficiency hazards (ODH) do not exist or can be mitigated between the tunnels from the standpoint of air mixing. This item needs concurrence as soon as possible.
- AHU and FCU sizes in the alcoves and tunnels did not consider Heat Rejection/Absorption into the rock wall. These units use chilled water from the surface as the heat rejection source.

Air Treatment Components in RDR:

- Large air handling systems providing heating, cooling, dehumidification, humidification.
- Fans for air purge, tunnel and shaft pressurization
- Miscellaneous ducting and accessories, dampers, insulation, etc
- Air treatment design is dependent on the ventilation requirements and the heat load criteria received from area system
- Air treatment and purge systems were not fully investigated for radiation issues
- Air treatment and purge systems configuration were not developed with consensus of any AHJ (authority having jurisdiction, even who this is may not be identified some time)

- Components in EDR:
 - Large air handling systems providing heating, cooling, dehumidification, humidification.
 - Fans for air purge, tunnel and shaft pressurization
 - Miscellaneous ducting and accessories, piping, dampers, insulation, etc
 - Chilled water systems including chillers, cooling towers, piping and accessories
- Need further input on air flow configuration concerning radiation and ODH issues.
- Develop further information on required ventilation/smoke/purge/safety systems.
 Need fire protection consultant

Generic Approach for EDR Plan

Based on Systems Engineering Management Approach

- Functional Requirements Identification
- Design Configuration Control Document
- Interface Control
- Optimization Studies
 - Design Alternatives Trade-Offs
 - Trade Studies
 - Constructability Studies
 - Value Engineering Study
- Reviews (value Eng etc)
 - Update criteria
 - Update baseline
- Update cost

- Combine currently separated Fan Systems
- Make <u>all</u> chilled water aircooled
- Consider heat rejection to cooling ponds where possible
- Make dehumidification equipment desiccant type
- Make air handling systems chilled water instead of DX
- Totally Remove Chilled Water
 - Racks still need cooler water
- Piping Materials, why stainless, why not PVC, copper, HDPE
- Optimize CHW temperature for electronics and air cooling

Tentative CF&S for EDR Plan

Concept Design Must Be Based on Validated Requirements

• Requirements should have a range;

Acceptable, Preferable, Desirable

e- source kick-off meeting