

ILC Polarized e- source RDR Overview

A. Brachmann

9/24-26/07

Introduction

- Electron source produces bunch train and transports the electrons to the damping ring
- Treaty point is DR injection device (excluding)
- Source will use a polarized DC gun using photoemission from a GaAs based photocathode
- Source consists of NC RF structures that provide bunching and pre-acceleration to 76 MeV
- 'Standard' ILC Linac cryomodules accelerate the beam to 5 GeV
- An additional electron source will provide the drive beam for the positron 'Keep Alive Source'
- The SLC injector is a good reference point
- Polarization, charge and lifetime of SLC design indicate feasibility of its technology (on a conceptual level) for the ILC
- ILC bunch train parameters provides technical challenges for the ILC source and solutions are not demonstrated

Source Parameters

Parameter	Symbol	Value	Unit
Electrons per bunch (at gun exit)	n _e	3 x 10 ¹⁰	Number
Electrons per bunch (at DR injection)	n _e	2 x 10 ¹⁰	Number
Number of bunches	N _e	~ 3000	Number
Bunch repetition rate	F _{μb}	3	MHz
Bunch train repetition rate	F _{mb}	5	Hz
Bunch length at source	Δt	~ 1	ns
Current in bunch at source	l _{avg}	3.2	Α
Energy stability	S	< 5	% rms
Polarization	P _e	80 (min)	%
Photocathode quantum efficiency	QE	0.5	%
Drive laser wavelength	λ	790 ± 20	nm
Single bunch laser energy	E	5	μJ

-ilc

Principal Subsystems

- Laser System
- DC Gun (Photoemission from GaAs)
- Subharmonic bunching system
- L-band bunching system
- Pre-acceleration
- Booster Linac
- Electron source to damping ring transfer line
 - Spin Rotation
 - RF Energy Compression

ilr

Original Layout

--ilC

- Driven by cost savings concerns
- Reduced redundancy but seems acceptable solution:
 - Remove one NC beam line
 - Keep 2 laser systems and 2 guns
 - However, no separate access during operation
 - locate laser systems above ground
- Exact coast saving is difficult to express because of convolution of this CCR with move of DR to central location
- Estimated saving is ~ 25 % of total cost

Final RDR Layout

ilr

Tunnel concept

9/24-26/07

ic

. .

Source Laser Parameters

- Central wavelength : ~ 790 nm
- Laser pulse energy is determined by cathode QE
 - ~ 5 µJ mirco pulse energy
- Tunability of \pm 20 nm
- Pulse shaping requires bandwidth
- Availability of high power cw pump source to facilitate amplification at 3 MHz
- To tap industrial resources → common lasing medium is required
- Choice of Ti:Sapphire laser system pumped by solid state
- Nd:YAG (or similar)

-ilC

Source Drive Laser System Layout

9/24-26/07

ilc

Baseline design: strained layer superlattice GaAs/GaAsP Polarization ~ 85 - 90 % ,QE 1% maximum, 0.3-0.5% routinely

High gradient p-doping increases QE and reduces surface charge limit:

```
5 \times 10^{19} \text{ cm-}3 \rightarrow 5 \times 10^{17} \text{ cm}^{-3}
```

:lr

İİL

DC Gun

- Baseline is SLC gun (120 kV)
- Higher HV is needed because of 1 ns bunches
- We anticipate Engineering and R&D as part of EDR phase
- See Matt Poelkers talk ...

Parmela simulations for low energy beam (to 76 MeV)

IC Accelerator Physics – Spin Rotation

- Hardware is one standard Linac Cryomodule w/o magnets
- Power source is one 5 MW klystron (+spare)
- Accomplishes energy spread specification for injection into DR
- 95% of electrons produce by the DC gun are captured within 6-D damping ring acceptance.
 γ(Ax+Ay)≤0.09m and ΔE x Δz ≤ (±25 MeV) x (±3.46 cm)

RF compression – Simulation Results

6D Damping ring acceptance $\sqrt{\gamma(Ax+Ay)} \le 0.09m$ and $\Delta E \times \Delta z \le (\pm 25 \text{ MeV}) \times (\pm 3.46 \text{ cm})$

e- KOM

- Total number of CM's: 25
- Use of standard Linac CM's and RF system
- First three strings (of 3 CM) 1 Quad per CM
- Remaining 5 strings 1 Quad per 2 CM's
- 21 CM's needed to accelerate to 5 GeV
- One string provides redundancy
- One CM (w/o magnets) in eLTR used for energy compression

System Inventory

Magnets		Instrumentation		RF System	
Bends	25	BPM's	100	216.7 SHB Cavity	1
Quads (NC)	76	Wirescanners	4	433.3 SHB Cavity	1
Quads (SC)	16	Laser wires	1	5 cell L-band buncher	1
Solenoids (NC)	12	BLMs	5	L-band TW structure	2
Solenoids (SC)	2	OTRs	2	1.3 GHz CMs	25
Correctors (SC)	32	Phase Mon.	2	L-band klystrons/modulat ors	13

9/24-26/07

---ilc

DR – Source RF System Compatibility

DR fundamental RF : 650 MHz DR fill patterns provides clearing gaps for electron and ion clod

 Δt = 177 DR RF buckets = 272.31 ns \rightarrow SHB frequency of 216.67 MHz