ilc

Polarized e- source Drive Laser system

A. Brachmann

9/24-26/07

Choice of Medium

- Wavelength determined by photocathodes
- Bandgap of GaAs based photocathodes is ~ 800 nm

	Choices			
Criteria	CW/QCW Laser Diodes	Fiber lasers (Er – doped)	OPA (See TTF laser)	Ti:Sapphire
Wavelength	Yes (limited)	Yes (frequency doubled)	Yes	Yes
Tunability	No	No	Limited	Yes
Bandwidth (pulse shaping)	No	No	Limited	Yes
Power	No	Yes	Yes	Yes
Complexity/Cost	Low	Medium	Very High	Medium
Commercial availability/interest	Yes	Yes	No	Yes (w R&D)

ilr

11L

Laser Pulse Energy

- Determined by QE of cathode and number of required electrons
- Charge at Source: 5 nC
- Wavelength: ~ 800 nm
- Typical QE: ~ 0.5%
- Laser (pulse) energy: $E = \frac{n_e * h * c}{QE * \lambda}$
- Therefore the required laser energy is ~ 1.6 µJ per micropulse + overhead (transport losses, QE decay) → <u>3 5 µJ</u>

- Pulse train generation requires modelocked oscillator (synchronization to external RF oscillator)
- 3 MHz pulse train can be generated with cavity dumping or external pulse selection
- Ti:Sapphire guaranties sufficient bandwidth for wavelength tuning, pulse stretching and shaping

ilr

Amplification of Pulse Train (I)

Pump Laser

- Ideal would be high pulse energy laser with 3 MHz repetition rate at correct pump wavelength
- But no reasonable pulsed pump at 3 MHz is available
 - Due to switching technology limitations
 - Highest commercial rep rate is ~ 200 kHz
- Second option is CW Amplifier pump
 - diode pumped solid state laser
 - Nd:YAG, Nd:Vanadate, Nd:YLF, <u>Yb:YAG</u>
 - Highest power suitable cw lasers deliver 40 W
 - Thin disk technology advantageous heat transfer solution

Amplification of Pulse Train (II)

Multi - Pass Amplifier Design

- Bow tie amplifier configuration
 - Passive system
 - Relatively few passes (~10)
 - Imperfect overlap of pump and amplified beam(-)
 → Beam distortion
- \rightarrow Regenerative Amplifier \leftarrow
 - Requires switching at 3 MHz
 - loss at optical surfaces → fundamentally less efficient as bow tie amplifier
 - Many (few hundred) passes
 - Pump and amplified beam overlap

(+)

(-)

Amplifier Geometry

ilr

Amplifier Crystal Length

ir

e- KOM

Cryogenic cooling of Amplifier Cell

- Issue is thermal lensing
 5 W pump maximum for un-cooled crystal
- Strong thermal lensing can not be compensated optically because of astigmatism ($n_e \neq n_o$)
- Solution is a cryogenically cooled amplifier cell to suppress thermal lens
 - Cryostat
 - Vacuum
 - Liquid He cooling

Pockel's Cell Technology

 Electro optical crystals also are piezo electric crystals!

$$\Delta \phi = \left(\frac{2\pi L}{d} / \lambda\right) \left[-n^3 r_3 / 2 + (n-1)d_{13}\right] E_3$$

electro-optic coefficient | inverse pi

inverse piezo-electric coefficient

- At high kHz to MHz rates, piezo electric resonances occur
 - Unusable electro-optic properties
 - Catastrophic damage of crystal itself

Pockel's Cell Technology (II)

- The solution is damping of the cell
- Maintain low switching voltage by using small crystals (transverse crystal) and multiple crystals in one cell
 - Double, tripple BBO
 - 2- 3 mm diameter aperture

 Limited commercial availability – custom cells and drivers

Ti:Sapphire laser physics (I)

Simplified Rate Equation System

ir iit Ti:Sapphire laser physics (II)

Parameter	Value	
TiO ₂ Doping	0.2	wt %
Ntotal	6 x 10 ¹⁹	cm⁻³
σ_{p}	4.9 *10 ⁻²⁰	cm ²
σ _e	28*10 ⁻²⁰	cm ²
τ	3.5*10 ⁻⁶	S
λ _p	515	nm
λ _p	800	nm
$\omega_0 = \omega_p$	25	μs
P _p	40	W
D	2	MW/cm ²
η	0.9	

Pump Intensity

9/24-26/07

---ilc

e- KOM

ILC Laser Development Lab

Investments FY05-07:

250 k\$ HVAC system 175 k\$ 40 W pump laser 120 k\$ regenerative amplifier (cryocooled, 3 MHz)

Current activities:

- Laser work
- Gun operation
- Photocathode development

ilr

İİL

Summary

- Laser technology suitable for the ILC source is not demonstrated or investigated in detail
- We are pushing technology in many respects
- R&D is required to confirm feasibility of our concept
- We are planning to build a 'proof of principal' laser system at SLAC
- Laser system will be used at SLAC's ITF to generate e- beam
- Laser system also needed to demonstrate
 photocathode performance und ILC conditions
 - Concern is surface charge limitations