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'.'IE Background (required stability)

o LIrf stability requirements (@ ML and BC) are < 0.07%,
0.24deg.

* In order to satisfy these requirements, FB with proper FF
control will be carried out.

TABLE 3.9-1

Summary of tolerances for phase and amplitude control. These tolerances limit the average luminosity
loss to <<2% and limit the increase in RMS center-of-mass energy spread to <10% of the nominal energy
spread.

Location Phase (degree) Amplitude (%) | limitation
correlated | uncorr. | correlated | uncorr.
Bunch Compressor 0.24 0.48 0.5 1.6 |timing stability at IP
(luminosity )
Main Linac 0.35 5.6 0.07 1.05 |energy stability <0.1%
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"IE Background (llrf tuning overhead)

e As in RDR, lIrf tuning overhead is only 16% in power.
corresponding to 8% in driving amplitude.

_-E 2.6-2

nit parameters.
Parameter Value Units
Modulator overall efficiency 82.8 % Awopi (%) Qrlyo )
Maximum klyston output power 10 | MW tantopr = 2Q o = - ﬁ sin ¢
Klystron efficiency 65 | % .
RF distribution system power loss 7 % ﬂ - _ (5) Lo sin &
Number of cavities 26 w 2Vear L w0
Effective cavity length 1.038 m ( QL) oot = V;"fw
Nominal gradient with 22% tuning overhead 31.5 | MV/m (a) Ty cos ¢y
Power limited gradient with 16% tuning overhead 33.0 MV/m tan z,bop!, — _—tan (bb — Y Dopt = 4’5&
RF pulse power per cavity 293.7 kW V2
RF pulse length 1.565 ms (Pg)mm = % = Viuw * Ipo * COS gﬁb
Average RF power to 26 cavities 59.8 | kW (@) (QL)OP’
Average power transferred to beam 36.9 kW /

e Under optimal QI and detuning, Pg becomes minimum.

Pg= 33 MV/m*1.038 m *9 mA *cos(5deg.)*26 cav.= 7.98 MW ~ 8 MW
RF loss (7%) -> available rf power= 9.3 MW
LIrf overhead = 9.3/7.98 -1 ~16%
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LIrf Operating Point

e As in RDR, lIrf tuning overhead is only 16% in power.
corresponding to 8% in driving amplitude. (too narrow!)

02/10/2007

I LIrf tuning overhead

| Waveguide loss (7%)

1 operation
= (~8 MW @33 MV/m)

Note: 10;1 change

in the klystron gain
slope!
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'.'IE Power Overhead Budget

o lIrf overhead (16% @33 MV/m op.) is used for
* 1% (beam current compensation) (1% fluctuation)
« 2.5% (HLRF) (1% HYV fluctuation)
» 2% (detuning; microphonics+Lorentz force)
* 10.5% Feedback headroom
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» Current FB control consists of feed forward and proportional FB.

» Having proportional gain of Pgain, fluctuations can be suppressed 1/Pgain.
(10% fluctuation and Pgain=100, -> 0.1% stability)

* In case of x% error, rf amplitude increase x/100*Pgain

(0.05% error and Pgain=100, -> 5% additional amplitude (10% in power)

* Thus 10% is minimum headroom for linear feedback operation.



Amplitude

,',I,': Slew Rate Limit

If there is an error present, then the RF system must add energy to
recover. (Additional power depends on Proportional gain.)

Any time the klystron and therefore the control loop are saturated
there will be no regulation of any disturbance such as beam loading.

— If multiple stations are saturated then amplitude errors will
be correlated.

Step response at QI=3e6 and Tdelay=1 us.

L2 f ; ; — PGain=200 settling time ~6 us
I e PGain=100 settling time ~18 us

“—— PGain=30 settling time ~100 us

.................................

\ For higher gain

_ PGain=1 operation, we need
/ more rf headroom.

0.4 F
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:p Perturbations
1O

* In order to evaluate lIrf stability (and satisfy lIrf requirements), we need further
information
* electron beam stability : <+/-1% (?) Frequency distribution?
* positron beam stability : <+/-1% (?)
-> 1% increase caused 1% more rf power.
» damping ring rf stability : <0.3%, 0.3deg.rms (?)
* preciseness of beam current monitor at damping ring : <+/- 0.5% (This will be
used for FF table at ML)
-> This precise beam current information is necessary for beam loading
compensation.

 accuracy of Ql and RF distribution at HLRF : <1% (?)
-> We will benefit from measured distribution losses and setting accuracy of Ql and
power splitters.

» microphonics level at cavities : <10 Hz (?)
 Lorentz force detuning with correction : <+/-50 Hz (?) (including microphonics)
-> +/-50 Hz detuning causes +/-2% additional rf power.

» Cavity gradient spread in an RF Unit
-> As much as 4% additional RF power.

02/10/2007 HLRF KOM: LLRF 8




il Detuning v.s. RF Power
JLF

2% additional power

i | I I
—100 50 0 50 100 150

50 Hz
* 50 Hz detuning requires additional 2% rf power
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al

e RF stability with one cavity failure
JLF

* If one of 26 cavities completely failed during rf operation, other 25 cavities
have to compensate during rf operation.

N maxE=34 3MY./m RF field bg:comes zer@.gueto failure
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*« 9.3 MW is not enough for fast decrease in rf power.
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e RE stabilit

JL T

y with one cavity failure

* If one of 26 cavity input stops, other 25 cavities have to compensate during rf

operation.
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* In case of slow rf decay, lIrf can sustain vector sum rf field by FB.
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,-'IE Failure in LFD Piezo Control

* If one of 26 cavities failed detuning control, other 25 cavities have to
compensate during rf operation.

maxE=34.7MV/m 2007929 _152514

panent

»vector sum
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« 13% more rf power is difficult to‘fhake.
-> LLRF cannot satisfy requirements even in the case of one cavity Piezo
tuner failure,
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:IP Why we need more rf power at piezo failure?

JL T

» Cavity drive current is used for “filling” and “to maintain rf gradient”.
* In case of “Piezo mis-control”, rf gradient change is more rapid than “no rf

input”, and the driving current is used also for “cavity filling”.
40 :
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:IF Case study: Piezo failure
o

If Piezo tuner does not work during rf pulse,

(a) When we have enough power overhead

We can continue operation during the pulse and check the failure during rf
operation.
If piezo failure is caused by HV supply, we can replace it with rf operation.

(b) When we do not have enough power overhead

\VA

V.

Vi.
Vil.

->

RF stability does not satisfy the requirements during the first rf pulse.
So we have to detune the cavity and change vector sum set-table (because
number of sum decreases.)
Diagnose the reason of failure off-line
If piezo failure is caused by HV supply, replace it.
Lower the rf gradient (in order to guarantee the rf stability even if the Piezo
control still fails) and change set-table for 26 cavities.
Operate with 26 cavities
If the failure is completely repaired, we can increase the set-point to the
previous value.

Smaller power overhead brings a lot of complicated works to do during beam
operation.

02/10/2007 HLRF KOM: LLRF 15
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,',I,': Operation at Different Gradients

Variations in Loaded Q

7
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Variety of QI results in the increase of rf field during rf pulse.
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,','E Strategy for lower gradient cavity

* Each cavity has a minimum performance of 35 MV/m during cavity mass-
production acceptance testing. (RDR p. I11-3)

-> At the beginning, we can operate at same rf field gradient (in principle).

« If some cavities can not operate at 31.5~33 MV/m after long time operation, these
cavities should be controlled in some strategy.

Example: one cavity operation limit is 28 MV/m other 25 cavity-limit is 33 MV/m
(1) Conventional vector sum control:

Operation point decreases to 28 MV/m (average 28 MV/m) or one cavity detuned
(average 33*25/26= 31.7 MV/m)

Advantage: simple

Disadvantage: we can not make use of the lower threshold cavity.

(2) Bane, Adolphsen, Nantista (PACO07): Ql and rf distribution control

Operation point can be 28 MV/m and 33 MV/m (average 32.8 MV/m)
Advantage: maximum usage of all the cavities with flat rf field during beam pulse

Disadvantage: complicated (motorized variable power tap-offs (VTO) and QI are
necessary), optimal Ql and VTO depend on beam current. -> When there is no
beam (or short pulse beam), rf field increase with time at lower gradient cavity.

(3) Bane, Adolphsen, Nantista (PACO7): QI control

Operation point can be 28 MV/m and 33 MV/m (average 32.8 MV/m)
Advantage: more simple compared with (2)

Disadvantage: We can not use simple vector sum control.

02/10/2007 HLRF KOM: LLRF 18
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RF field profile depends on beam condition (on/off/long/short ...).
Especially, lower gradient cavity’s field increase in case of no-beam.
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3

30

25

[
o]

Operation with Cavities at Different Gradients

Beam OFF

(1) W =32.2Mvim (0.0%)

Y_=30.8MVim (4.2%)

Y_=28.5MVim (8.3%)

Y_=28.1MVn (12.5%)
(_

W =26.8MVim (187 %)

1 =21 G =34e+006 R =307kW
2 =22 0 =38e+005  F =300kwW
3 =23 G =4.5e+006  F=300kW
() =24 G =58el0B R =311

1 =25 Q=7 4e05 R o=344k00

&

i} 200 400 600 aoo 1400 1600 1800 2000

time

1000
[ sec]

1200

...But when unexpected beam-loss takes place (by MPS,PPS), lower

gradient cavity will be quenched.
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JL T

Only loaded Q control

The RF unit voltage gain will not be completely flat along the bunch train (it
will also, in general, not be monotonic).

09 [
08 [
0.7 1

0.6 L

1t

head bunch

tail bunch

Bane, Adolphsen, Nantista (PACQ7)

q

Figure 3: 1-p, individual ¢’s: For one seed, where opti-
mized p = 0.92 and 7, = 0.885: gradient g vs. g for the
head (red) and tail (blue) bunch in the train. Also plotted

are (giim); vs. optimized g; for the 26 cavities (plotting
symbols). For this seed §;,ss = 2.8%.
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,'Iﬁ Required rf power under variation of
"o waveguide length .
» Py = FE”" . ll {(1 + M{'Hhﬂ'h) + (—W + {f_:?] .{MMI :ﬂillm) } (A.27)
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* Phase variation between cavities (due to the waveguide expansion under rf
dissipation) requires more rf power.

* In vector sum control, +/- 8 deg. variation in cavity requires extra 1% rf power.
 +/-3 deg. variation requires 0.15% additional power (negligible small).
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,',',‘: Recommendations

The specification for Modulator regulation needs to be
better defined and probably be tightened up

Both the cavity power couplers and power splitters(3-stub
tuners) need to be motorized if there will be cavities
operating at different gradients

Selection of cavities with similar quench limits for RF units
IS highly desirable from the RF control viewpoint.

Continued R&D effort into the control of LFD and
microphonics (or stiffer cavities) is key to operation at high
gradients

Study minimum control overhead during high beam
current tests at FLASH

02/10/2007 HLRF KOM: LLRF 22
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Treaty points between LLRF and HLRF

(i % ?QC)

|
HLRF covers
- Arc detection (optical fiber + detector)
- high power RF devices (> 1 W)
- interlock equipment (MPS)
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'.'IE Questionnaire to HLRF

LLRF team would like to have a document of replies to these gquestions.

(1) High voltage flatness during rf pulse (or klystron output (<+/-2.5%) and phase
(<+/-5 degq.)?)

(2) Strategy of “manual” loaded Q and tap-off (VTO) setting in beam tunnels.

Example)
1) determine operational gradient of each cavity
2) setload Q and tap-off to optimized value

(3) Procedure of optimization on QI and VTOs commissioning from 0 to 9 mA.
-> How do you set Ql and VTOs? (conventional or QI/VTO control?)

(4) How much the residual errors of loaded Q and tap-off control (<+/-3%7?)?
Ref)

*10% residual error in loaded Q induces 4% higher cavity field (need further simulations)
» 10% residual error in rf distribution induces 8.5% higher cavity field (need further simulations)
* Roughly 3%rms residual errors in loaded Q and tap-off coupling causes 3% rms more rf power. (need further

simulations)

-> need motor control of 3-stub tuner and VTO for fine tuning & less rf dissipation.
(5) We hope HLRF group will confirm the waveguide loss (7%) from klystron to
input coupler experimentally in order to guarantee the LLRF tuning overhead.

-> In the Friday ML meeting, it revealed that 8.54% loss (@10 MW or nominal
operation power?) would be expected instead of 7%.

We do not agree the higher rf loss at waveguide because our overhead would be

suppressed.
02/10/2007 HLRF KOM: LLRF 25



ilp Summary
Y

* In order to satisfy stability requirements under severe lirf
tuning overhead, suppressions of perturbations are essential.
Beam current, cavity detuning, rf distribution and so on.

* LLRF team will continue RF simulation based on proper
parameters.

* LLRF team want to know the real power overhead.
* We do not like the idea that “all unknown issues (such as rf
waveguide loss, klystron maximum operation power, modulator

stability,...) would be included this lirf overhead.”

« Shortage of the lIrf overhead results in the lower gradient
operation !!

02/10/2007 HLRF KOM: LLRF 26
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Thank you
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Spare slides
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",'E RF power estimation

Steady state rf dissipation at a cavity.
2

a ZN0) ] < f.' T i
» Fy = Vouw l 1 + (t‘j:] ,I:PL i cosag, |+ _j”r + { ‘J s S1TH ey, [AL2T]
. {f_EE'J {:_}_f 1 | FELTT ,.Il'l_-"_’ V LT

General description including transition state

d 1;. o —[.Lllf.'g —Aw I; RL[A}]_JI,-"Q 0 Ir )

| =1 I, =1 + |

r gen/real + Ibeam/real’ I

gen/imag beam/imag 45 ,
1 R :: _ .;_I_,.w"""/g;é;e.ral{)r induced |
Pg = Z ‘~ QI (I gen/real2 + Igen/ imagz) E"m- ,f gracen ]
Q = _
Simple case: 9 mA (0deg.) beam with optimal QI. 3 2 A
18 mA for filling (transient), —— 4/—:’: : '
18 mA under beam loading (steady state) — —— beam induced gradient |
9 mA without beam (steady state) o - . .
Twice drive current (x4 power) is used for cavity filling time [us]

If rapid field increase is required, filling power becomes larger.
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'.,l't: Open loop characteristics

bode for SC cavity Parameters:
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Delay=1us
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ilp
in- Step response

Step Response
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Faster response at high gain (but larger drive will be necessary).
o2i102007  Fast FB needs larger driving-RoWsk - | L RE
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RF Phase Reference Line
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