

Detector design optimization for push-pull IR and for surface assembly and corresponding IR requirements

Tom Markiewicz/SLAC SLAC BDS Kick-Off-Meeting 12 October 2007

Charge: System integration and optimization

Quantify the worth/cost value, discuss cost drivers, evaluate performance/cost derivatives, review design decisions in terms of cost impact and discuss possibilities of further refinement.

- Aim to identify the performance driven specifications for accelerator components and especially CFS and discuss how engineering cost-performance trade-offs will be performed.
- Should include discussion of machine-detector connection and optimization, and specifically include discussion of the integrated engineering of push-pull IR, based on <u>IRENG07 workshop</u>, aimed to reduce the risk of performance and cost of this solution.

- There are no detectors yet, only concepts
 - Letters of intent are forthcoming
 - Detector Engineering lags Machine Engineering
- GLDc, LDC, & SiD are seriously treating Push-Pull (P-P) & Surface Assembly (S-A)
- Most discussions at IRENG'07 regarding detectors concepts and P-P / S-A touched
 - Civil: Cavern & surface layout, cranes, services
 - Cryo: 2K/4K Refrigerators for QD0 & plumbing
 - These will be discussed by Osborne/Parker
- Will review IRENG'07 detector presentations for comments independent of civil & cryo

3 Major Developments Since LCWS'07 (DESY)

- GLDc design introduced which incorporates a self-consistent model for push-pull and surface assembly
- Major contribution of CERN civil group to layout/cavern/assembly/platform/access discussion via fabulous layout schematics
- Formation of ~10 member Si D Engineering team

2007.10.12 SLAC BDS KOM

GLDc Assembly: 7 major pieces

- Barrel part (Yoke+ECAL+HCAL)
 - 5080+1130 T = 6210 T
 - Pure CMS style assembly can be done by splitting the barrel part into 3 rings
- Each Door (Yoke + ECAL+HCAL)
 - 3050 T + 270T = 3320 T
 - and splitting each end cap part into two halves
- Cranes:
 - 50~100 T underground depending on Pacman design
 - 2,000 T crane for the shaft
 - 80 T crane in the surface assembly hall
 - set by 24 Fe yoke octants
- Shaft sizes, crane access and underground vault sized by CFS for GLDc as discussed by J. Osborne

GLDc QD0 Support Based on Cantilevered Support Tube with Base on 2 x 10.5m wide Platform

- A: slide sideway using air pad
- B: supported from the floor of platform
- QD0 cryostat is supported by the support tube and the support tube is supported from B
- We can put additional support for the support tube at the entrance of endcap yoke to damp the vibration, if necessary
- Upper part of B (~10 ton) must be removable by crane for installation and removal of the support tube
- C: slide along the wall (D) (common to both experiments) ~50 tonx2
- D: part of the wall
- Wall distance can be as small as 11.5 m from IP, if the crane can access to 2.65m from the wall
- Construction of C is done by a mobile crane (CMS style)
- Inner radius of pacman should be determined after design of gate valve etc. between QD0 and QF1 is fixed

2007.10.12 SLAC BDS KOM

Plan view

3D view

On-beamline & Off-beamline Access

Split Endcaps not Fundamental to Design

Under Study!

• The structure of the detector should allow both.

Factor 2 more bending if split!

At the moment we prefer end cap halves bolted together with the possibility to open in an major operation if necessary!

2007.10.12 SLAC BDS KOM

TPC Exchange Off Beamline

- ➔ If not split, the end cap yoke has to be moved 8,5m longitudinal (or aside) for TPC exchange!
 - ➔ QD0 and service cryostat have to go with the end cap yoke while the Helium supply line is not cut!

Similar Width "Platform" to GLDc

- The supply lines from the service cryostat to the QD0s go from the bottom through the shielding.
- The cryostats are connected via flexible lines to Helium supply.

Relative Merits of Platform Under Discussion

ERIENCE FERMEE SUR FAISCEAU

- **Detector should** be as ridged as a platform
- It has to carry the QDO support and the service cryostat!

→ 20m wide (Instead of 15.5m)

SiD: Doors & Barrel Are Not Split Minimum of 3 pieces to lower

"Pure CMS" concept gantry requirements:
•4000T Barrel
•Arch supports, Yoke, H/E-cals, coil
•2500 T Doors
•Yoke, H/E-cals

2007.10.12 SLAC BDS KOM

T. Markiewicz/SLAC

17 of 35

Sequence of Operations for Surface Assembly/Test & Underground Reassembly

- Detector subassembly construction & surface tests
 - Octants of muon chamber instrumented barrel yoke, barrel Hcal, barrel Ecal
 - Four sub-modules of EC return flux instrumented with muon chambers, donut Hcal, Ecal
 - Tracker, vertex and FCAL packages
- Surface Magnet test

İİL

- Assemble barrel support and the bottom 5/8 flux return octants
- Drop in coil & cover with remaining 3/8 octants
- Assemble two door legs and 4 360° (180 °?) plates of flux return
- Test magnet and disassemble

Lower detector

- Reassemble lower barrel with supports below ground
- Load barrel HCAL and ECAL modules into coil cryostat via threaded beam
- Lower loaded coil package and capture with upper barrel yoke segments
- Depending on crane capacity
 - Lower fully assembled door
 - Lower door pieces, the last plate with the Endcap Ecal & Hcal, and reassemble
- Tracker, VXD and FCAL installed below ground at last minute

A Surface Assembly/ Underground Reassembly ilr iic Scenario for SiD

600T Surface crane & No Gantry

M-Tons	Stainless HCAL Radiator		Tunsgten HCAL Radiator	
	Barrel	Endcap x2	Barrel	Endcap x2
EM Cal	59	19	59	19
HCAL	354	33	367	46
Coil	160		116	
Iron	2966/8= 374.5	2130/4= 532.5	1785/8= 223.125	1284
Support x 2 (each ~5%Fe)	150	110	90	65
Total to Lower	Loaded Coil=573	Assembled Door=2402	Loaded Coil=542	Assembled Door=1479
Shaft Diameter(m)	8.3m	10.4+2.0m		

FCAL/QD0 Supported with Door Open

Whether Spider or tube used for Support, SiD has assumed it will be completely supported by door (not cantilevered off a post to the ground) but has not proposed a way to fix it in z when door opens

2007.10.12 SLAC BDS KOM

SiD IR Hall Assumptions

- Push-Pull and doors opening with Hilman Rollers "Jerios on SiD or on a side platform Racks and ancillaries on SiD or on a side platforms (location driven by the the fringe field)
 - 3. Cold Box off detector (in the hall)
 - Flexible cryogenic transfer line (100mm OD) Solenoid-Cold box 4.

2007.10.12 SLAC BDS KOM

4th Underground Assembly "CMS" Surface Assembly not addressed

- Space and volume
 - 30m x 50m x 25m is ample space
- Crane
 - · 225 t (~ CMS coil cold mass) this is maximum
 - · Calorimeter in 10t wedges
- shaft size
 - 15 m diameter

disassembly and access

- · Titanium frame;
- · wall of coils
- muon chambers
- · calorimeter wedges

To Open 4th On-Beamline

• on beamline

;lr

İİİ

I do not understand "move Lumi/Beam cals out"

- move Lumi/Beam-Cals out
- move wall-of-coils out 2m
- lift muon spectrometer chambers out vertically
- move calorimeter modules out axially
- At this point, the interior and the tracker ends are accessible. The FF support has not been moved.
 - the tracking chamber can be 'push-pulled' to the other end
 - vertex chamber is moderately accessible in this position

Summary of Push Pull & Surface Assembly Aspects of MDI

- GLDc and LDC have similar designs with similar crane/shaft requirements wherein FCAL/mask/QDO package supported in a tube off cantilevered off a pillar to ground (or platform)
- GLDc shows a moving platform while LFC says either platform or rollers would work
- SiD requires 2x gantry capacity for "CMS" surface assembly
 - not convinced that non-CMS-like underground assembly is better
 - Feels (MIB at least) that platform is expensive solution germaine to CERN geology & LHC detector complexity
- SiD FCAL/mask/QDO package supported in a spider or tube directly from doors
 - Needs to address how z motion of support tube is controlled
- 4th does not consider surface assembly and wants to translate the QF1-QD0-Detector-QD0-QF1 package in push/pull

Interface Issues

- 1st order self-consistent PACMAN shielding invoked by GLDc, LDC, SiD. However, engineering required
 - To see underground crane capacity required
 - GLDc shows 0.5m Fe / 2.0m concrete from r=0.5m
 - SiD shows 1.0m Fe/ 2.0m concrete from f=0.25m
 - Rad Phys calculation done for 0.5 m Fe/2.0 m Con from r=1.25m
 - To understand where detector A to detector B PACMAN interface occurs
 - To understand how to remove detector A specific PACMAN shielding "trapped" on detector B side of the beamline
 - Hinged to the doors of detector A?
- Platform A, platform B, Floor, detector A, detector B interfaces
 - If "A" needs/desires moving platform solution, must "B" adopt as well

QD0 Package Adjustment Mechanism Likely to Require Significant Radial Space

Knut Skarpaas 2000 Design of Integrated Coarse/Fine Cam/Piezo Mover System for a stiffened PM QD0

٠

