

Work Package 12: Systems Integration and Availability

Andy Wolski

Overall Aims

- The principal aim and purpose of WP12 is to ensure that the designs for the various components and subsystems are:
 - "internally" consistent within each subsystem (e.g. all the vacuum chambers connect to each other);
 - consistent between different subsystems (e.g. the magnets fit round the vacuum chamber);
 - as complete as possible.
- WP12 should also aim to estimate the availability of the damping rings.

Achieving the Aims

- The aims should be achieved by:
 - Developing and maintaining comprehensive documentation of the specifications and design parameters (in EDMS/database);
 - Developing and maintaining an engineering (CAD) model of the damping rings;
 - Asking someone (Tom Himel or Janice Nelson) to run AvailSim (again) for the damping rings.

Deliverables

- Comprehensive documentation for the specifications and design parameters (including cost?) of the damping rings.
- 2. An engineering (CAD) model showing the principal components in the damping ring beam lines, including:
 - vacuum components (chambers, bellows, flanges, pumps...)
 - normal conducting magnets
 - wiggler cryostats
 - RF cryostats, (some section of) waveguide
 - principal diagnostics (BPMs)
 - supports

(but maybe with placeholders in some – or many – cases)

3. An estimate of the availability (based on stated MTBF, MTTR...)

Interfaces

 WP12 has key connections with all those work packages concerned with technical designs of damping ring subsystems or components...

			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	Lattice design and acceptance	1		ор	ip		ор	ор	ор		op	ip	io	io	ор	io	ор	ор
2	Orbit, optics and coupling correction	2	ip			io							io	io				
3	Damping wiggler design	3	op						io	op				io	io			op
	Instrumentation, diagnostics and controls	4		io										io	io			
	Impedance and impedance-driven instabilities	5	ip					ор				ip			ip	ip		
6	Fast Instability Control Feedback	6	ip				ip					ip			ip	ip		
7	Electron cloud	7	ip		io										io			
	Power systems	8			ip								io	io				ор
	Other collective effects	9	ip															
	650 MHz SRF cavity design	10	ор				ор	ор						io				ор
	Magnets and supports	11	io	io						io				io	io	io		ор
12	Systems integration and availability	12	io	io	io	io				io		io	io		io	io		io
	Vacuum system	13	ip		io	io	ор	ор	io				io	io		io	io	ор
	Injection and extraction systems	14	io				ор	ор					io	io	io			
15	Ion effects	15	ip												io			
16	Conventional facilities and cryogenics	16	ip		ip					ip		ip	ip	io	ip			

...CF&S will be a particularly important connection.
 (Can we agree on using the same CAD tools?)

Resources

- The minimum requirement is:
 - 0.5 FTE Design Engineering
 - 0.2 FTE Accelerator Physicist
- Cockcroft Institute has volunteered to lead this Work Package and is working to provide the resources.