## Damping ring cryogenics summary

- Damping ring RDR cryogenics
- The damping ring reference design for cryogenics is based on the DR layout from November, 2006
- Heat loads and cryogenic plant sizes estimated
- Two cryogenic plants
- Transfer lines in the tunnel to outlying wigglers
- EDR cryogenic work description
$e^{+}$

$e^{-}$



## Cryoplant assumptions

- Plants at shafts A and C
- Transfer line from plant A to wigglers at B
- Transfer line from plant C to wigglers at D
- Add 40 W at 4.5 K and 200 W at 70 K per plant for other heat due to distribution system (transfer lines, distribution boxes, and end boxes)


## Heat load assumptions

- Damping ring cryogenic loads come from 650 Mhz RF cavities operating at 4.5 K and wiggler magnets operating at 4.5 K . Heat load estimates are taken from the following sources:
- 650 MHz RF cavity at 4.5 K
- e-mails from Mark Palmer and Andy Wolski, 15 Dec 06
- 650 MHz RF cavity at $40-80 \mathrm{~K}$
- heat load is my guess
- Wiggler magnet
- heat loads from Mark Palmer, personal communication from and S. Guiducci DR System Area Status Videoconference 4/4/06
- Current leads assume 118 amps , independently powered wigglers, conventional (copper) leads assumed here, but may be HTS for a reduction in cooling requirements.


## Heat loads

| $\mathrm{e}-$ <br> RF module <br> (one cavity per module) | $\mathrm{e}+$ <br> RF module | $\mathrm{e}-$ <br> wiggler <br> $(2.5 \mathrm{~m})$ | $\mathrm{e}+$ <br> wiggler <br> $(2.5 \mathrm{~m})$ |
| :---: | :---: | :---: | :---: |
| 30.0 | 30.0 | 5.0 | 5.0 |
| 40.0 | 40.0 | 0.0 | 0.0 |
|  |  | 0.01 | 0.01 |
| 10 | 8 | 20 | 20 |
|  |  | 20 | 20 |
| 8 | 10 | 20 | 20 |
|  |  | 20 | 20 |
|  |  |  |  |
| 2 | 2 | 4 | 4 |
| 18.0 | 18.0 | 80.0 | 80.0 |
| 1 |  |  |  |
| 300.0 | 240.0 | 200.0 | 200.0 |
| 400.0 | 320.0 | 0.0 | 0.0 |
|  |  | 0.4 | 0.4 |
| 240.0 | 300.0 | 200.0 | 200.0 |
| 320.0 | 400.0 | 0.0 | 0.0 |
|  |  | 0.4 | 0.4 |
|  |  |  |  |
| 50.0 | 50.0 | 50.0 | 50.0 |
| 10.0 | 10.0 | 0.0 | 0.0 |
| 500.0 | 400.0 | 2000.0 | 2000.0 |
| 100.0 | 80.0 | 0.0 | 0.0 |
| 400.0 | 500.0 | 2000.0 | 2000.0 |
| 80.0 | 100.0 | 0.0 | 0.0 |

Notes: 2 cryoplants total for damping rings

## Cryogenic plant summary

| For each cryogenic plant (of two total) |  |  |
| :--- | ---: | ---: |
| Total predicted 4.5 K heat | (W) | 1660 |
| Total predicted 4.5 K liquid production (for current leads) | (grams/sec) | 0.80 |
| Total predicted 70 K heat | (W) | 5080 |
| Uncertainty and overcapacity (total combined) margin |  | 1.54 |
| Installed power | (MW) | 1.13 |
| Cryogenic plant capacity (converted to 4.5 K equiv) | (kW) | 3.45 |

## EDR DR work package

- Damping ring cryogenic system needs some very fundamental design work
- Conceptual layout and flow schematic
- Cryogenic distribution plans
- Concepts for cool-down and warm-up
- Re-evaluation of system heat loads
- Like for main linacs, cryogenic distribution design is a major part of the cryogenic system effort.
- This work will be done in close collaboration with the damping ring area leaders.


## EDR -- information needed

- Heat loads
- Static
- Dynamic
- Uncertainty
- Conceptual designs of cryostats, cooled devices
- Integration with cryogenic supply
- Locations in the tunnel
- Tunnel layout, potential interferences


## Deliverables

- Conceptual mechanical layout of cryogenic system
- May include conceptual designs of cryogenic distribution and end boxes if resources suffice
- Cryogenic system flow schematics (P\&ID)
- Includes draft cryogenic instrumentation list
- Concepts for cool-down and warm-up
- Updated spreadsheet of heat loads, flow rates, plant sizes
- Provides input for pipe sizes, etc.
- Updated cryogenic plant size estimate
- With error bars
- Updated cryogenic system cost

