Summary of Superconducting RF Materials Workshop 23-25 May, 2007

and Materials Outlook

Fermilab Accelerator Physics and Technology Seminar 16 August, 2007

Lance Cooley

SRF Materials Group Leader, Technical Division

Fermilab

With acknowledgment to: Genfa Wu, Claire Antoine, & Helen Edwards

SRF Materials Workshop report – APT seminar 16 Aug 07

Workshop overview

http://tdserver1.fnal.gov/project/workshops/RF_Materials/

- May 23-24, 2007, Fermilab
- Organized by Helen Edwards, Genfa Wu, and Claire Antoine
- About 70 participants
- Purpose: encourage participation in SRF science by academia, industry, and basic science labs in a LTSWlike format
- Focused discussions organized by program committee toward topics of basic interest to SRF science, while in the context of real cavities with real deliverables

A brief history

- Regional workshops 2005 and 2006 organized by Pierre Bauer and Claire Antoine (Midwest SRF Collaboration): FNAL, UW, NU, MSU
- Materials workshop at FNAL 2001, DESY 2003 mostly Cornell – JLAB – DESY – KEK
- 13th annual International Workshop on RF Superconductivity, Beijing, October 2007
- 2007 workshop represents a national critical mass! Funding sources are now responding positively!
- Intention: continue *national* workshop annually or semiannually

Charge from Claire Antoine (see ATP seminar 22 Feb 2007)

- Understand basic issues
- Evolve beyond niobium's limits; open up new frontiers
- Understand physics and materials science
- Bring to bear surface science coordinated with characterization of real cavities
- Build interactions, form coordinated research activities, promote interdisciplinary studies
- Extend SRF materials community to basic science
- Expand SRF materials community to academia and industry

Workshop topics

- Fundamentals of RF superconductivity
- Materials properties and surface characterizations
- New materials
- Innovative processing of materials
- Production of niobium

Main Findings

- A new era may be emerging where internal surfaces of RF cavities are engineered by design.
 - Conformal multilayers
 - Protective coatings
 - Roughness removal
 - Re-plating Nb
- Gurevich theory to break niobium monopoly can now be tested in real cavity forms

- Exciting new tools make it possible to search out problem areas and perform materials science
 - RF microscope
 - Scanned laser microscope
 - Orientation imaging microscopy
- An analog of the "short sample test" is missing
 - LANL cavity
 - U Md resonator

Main Findings, cont.

- Progress toward understanding inter-relationships between surface structure, surface chemistry, and Nb cavity performance
 - Oxygen and oxides
 - Tantalum: relax spec?
 - QA and tracking processing history
- Alternatives to HF etching exist
 - Ion cluster bombardment
 - Plasma etching
 - Single crystals (already smooth)

- Messages to HEP:
 - Much work is bootstrapped need support
 - New talent is being uncovered!

A basic SRF cavity...

Quality coefficient $Q_0 \propto G / R_s$

G = geometry factor i.e. E_{acc} depends on the shape

Surface resistance R_S $R_S(Nb) \sim 1 n\Omega @ 2K$ $<< R_s(Cu) \sim 100 \mu\Omega$

$$\begin{split} & \mathsf{E}_{surf} \sim 10^{6} \text{--} 10^{7} \text{ V/m} \\ & \mathsf{J}_{surf} \sim 10^{9} \text{--} 10^{10} \text{ A/m}^{2} \\ & \mathsf{H}_{surf} \sim 100 \text{ mT or more} \\ & \lambda_{L} \sim 50 \text{ nm} \end{split}$$

SRF state of the art

 Extremely pure niobium provides the highest possible surface RF field of any material

Graphics from Singer and Padamsee

Performance metric: Q vs E

Figure 4: Baking effect on C1-03 Saclay cavity (electropolished and tested at KEK) [9].

Performance is sensitive to many things, some rooted in the material and some in cavity preparation

Q vs E of a series BCP of 1P6

Fig. 9: Q vs. E of a series of BCP on 1P6

Detail of the usual process

(1/2)

WHY COMMENT Nb gets H, C, N, O. All contaminants Clean welding degrade SC @ weld $P Q_0/10$ Remove interstital Needs 1400 °C in high vacuum. RRR 300-400 now commercially available contaminants Remove damage Etchants are nasty! layer (~100 µm) Need smooth and clean surface Remove Hydrogen is a byproduct of deep hydrogen acid etching contamination Remove trace Diffusion length < 10 μm contaminants from surface layer (O, C, N)

Detail of the usual process

Slide from Claire Antoine

Highlights - Limits to SRF (Ginzburg-Landau theory)

SRF Materials Workshop report - APT seminar 16 Aug 07

Plot from Padamsee

How to use materials with higher Hc than Nb?

- Alex Gurevich (FSU): SRF is limited by flux motion at fields below H_{sh}
 - Implication: hot-spot models should explain quenches
 - Implication: build multilayers, expel flux to non superconducting layers
 - Alloys and compounds can be used
 - Thin superconductors have enhanced H_{c1}, so they resist flux entry

Measurement of the high-field Q drop in a high-purity large-grain niobium cavity for different oxidation processes

G. Ciovati,^{1,*} P. Kneisel,¹ and A. Gurevich²

¹Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA ²Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, USA (Received 8 May 2007; published 27 June 2007)

Fits are according to hot-spot model

Atomic layer deposition: route to coatings and multilayers? M. Pellin, J. Norem - ANL

- Paired chemical-vapor reactions are used
 - Surface atoms control reactions
 - Surface atoms that stop one reaction can start another
 - Reaction products leave behind surface atoms that prevent subsequent reaction, so one and only one layer is formed at a time
 - Coating is conformal; ellipsoidal cavities can be coated

Highlights

- Pure Nb is specified for good thermal conductivity.
- Tantalum content from 200 to 1300 wt. ppm does not seem to produce a performance change when cavities are operating at ~25 MV/m.
 - Therefore, should we relax the spec to reduce cost?
- Tantalum content *does* produce a small dropoff in performance, about 10%, for ~35 MV/m cavities.
 - No Ta-rich cavity exceeded 33 MV/m

Tantalum content: Low Medium High

Plot from Singer

Dissection of a cavity with hot spots Romanenko - Cornell

Courts, e.u

- Cut out hot spots to see what's wrong using advanced surface probes
- Oxygen? No. Roughness? No.
- Evidence for nitrates first time ever seen

SRF Materials Workshop report – APT seminar 16 Aug 07

Plot from Romanenko

Oxygen pollution model

H. Safa, K. Kowalski, G. Ciovati

Graphics from Ciovati

Testing the "pollution model"

20-

Eremev - Cornell

- Baking moves oxygen but doesn't fix hot spots
- Thus, oxygen • seems not to be the cause of hot spots

Graphics from Cornell

Testing the "pollution model" Zasadzinski - IIT, Iavarone - ANL

Virtually no change in the superconducting gap for tunneling through oxide or for "burying" tip – suggests oxide layer has no effect on superconductivity!

- But subtle differences could matter
- Need modeling

As-cleaned Baked

Graphics from Zasadzinski

SRF Materials Workshop report – APT seminar 16 Aug 07

Scanning RF microscopy

Steve Anlage - Maryland

SRF Materials Workshop report – APT seminar 16 Aug 07

Graphics from Anlage

Figure 1: SEM image of a typical probe with two metal strips on the quartz dielectric support

Graphics from Anlage

Laser scanning microscopy

Steve Anlage - Maryland

Idea: scan laser within cavity, find bad spots

Laser Scanning Microscope Image: T. Kaiser, et al., Appl. Phys. Lett. 73, 3447 (1998)

Cavities for "short sample" tests

Graphics from Tajima

New materials - Magnesium diboride Xi - Penn State

- Surface resistance is a decreasing function of T/T_c, so higher T_c helps
- MgB₂ is being made by STI for communications, and it is showing Nb-like behavior but at 20 K (so should be even better at 2 K)
- Penn State group: CVD using diborane (very clean boron source, also reduces oxygen) onto Nb single cell provided by FNAL

Mg post reation

Innovative Processing - avoid HF

- Gas Cluster Ion Bombardment: used by semiconductor industry to clean wafers.
 Possible way to smooth and clean Nb
 - But will it damage Nb by "ion peening"?
 - Nb is like bubble gum, not hard like silicon.
- Plasma cleaning
 - Chemically reactive plasmas clean and smooth surface but also leave behind reaction products, e.g. NbB₂ from BF₃. Some products could be beneficial, however.
 - Electron cyclotron resonance: simple! Just hold magnet on back side of cavity
- Tumbling

Niobium Processing

- Grain size issues
 - Small grains: good formability and low roughness upon etching, but can trap impurities in boundaries
 - Large grains: grain interiors are smooth, but big steps at boundaries (roughness) and tolerances difficult to hold
 - Single crystals: very smooth, very well behaved mechanically, but expensive. Engineering is just beginning. Do properties depend on crystallographic orientation?

Large-grained niobium sample after etching 100 μm from surface. Steps at boundaries are 2, 12, and 15 μm

Graphics from Singer

Single crystal option is more exciting.

Deep drawn half cell of large grain niobium; grain boundaries pronounced, anisotropy of properties (earing) Deep drawn half cell of single crystal niobium

Predictable properties

Graphics from Singer

SRF Materials Workshop report – APT seminar 16 Aug 07

Single crystal Nb - already smooth after etch

BCP provides very smooth surfaces (A.Wu, Jlab) 1274 nm fine grain bcp 27 nm after ~ 80 micron bcp, SC 251 nm fine grain ep

Field Emission Scanning: A.Dangwal, G.Mueller (Wuppertal)

 $E = 120 \text{ MV/m}, 0 \text{ emitters} \qquad E = 150 \text{ MV/m}, 2 \text{ emitters} \qquad E = 200 \text{ MV/m}, 4 \text{ emitters}$ **FE scans on single crystal Nb sample after 30 µm BCP.**

Example of similar FE scans on fine grain EP Nb sample. (left) E = 90 MV/m, 3 emitters (right) E = 120 MV/m, 8 emitters

Surface quality of the BCP treated SC is better as of EP treated polycrystalline Nb

Graphics from Singer

90 120

Niobium specifications

- Sheet rolling produces different grain textures
- Shear bands produced by rolling may not be fully recovered by annealing
- Both should affect formability and performance
- Problem: present Nb spec may not contain adequate testing, and may contain conflicting requirements

What has happened since the workshop?

- DOE-HEP is processing academic proposals
- FNAL has provided cavities for experiments
 - GCIB (Epion, Inc.)
 - MgB₂ (Penn State)
 - ALD (ANL)
- FNAL has purchased other services related to R&D
- Interactions between basic materials groups and cavity projects have increased
- FNAL has begun making and testing its first cavities (with help from collaborations)
- Summary: "mass" and "energy" are converging!

Outlook - 1

- The workshop revealed / reemphasized that the niobium starting material is not simply "sheet metal"
 - We may need to test every sheet until we understand the consequences of fabrication history, trace impurities, grain size, etc.
 - We will need a single cell program to limit costs
 - We need to rethink our niobium specification

- The "pollution model" remains a mystery!
 - Experiments point away from oxides / oxygen
 - Progress will continue to be empirically based
 - We need to give new, very basic science a chance to produce results and generate understanding and new ideas
 - New players, e.g. Seibener at Chicago, were stimulated by workshop
 - Old players, e.g. Kelley at NCSU, were invorgorated by workshop

Outlook - 2

- The workshop showed that there are several alternatives to reduce or remove dangerous acid processes
 - Crystals are inherently smooth
 - Tumbling, plasma cleaning, bombarding, etc. will become more active.
 - (We are pushing ideas here, too, via collaborations and other routes)

- The workshop showed that ultimate limits to SRF are closely tied to intrinsic limits of the superconductor
 - The superconductor determines a starting point, from which processing flaws subtract
 - We must perfect the starting point at all costs
 - We must also identify and limit process flaws
 - We must continue to distinguish what is due to niobium and what is a result of processing

Outlook - 3

- Thin layers / multilayers are an exciting way to break the "niobium monopoly"
 - We anxiously await the results from ALD, MgB₂, other experiments to test Gurevich's model
 - We must develop the ability to test "short samples"
 - Point RF probes @ 2 K?
 - "Brute force" RF cells?

- We must sustain the workshop's energy and its critical mass of participants!
 - Thanks to Helen, Genfa, Claire, and Pierre

