# Vertex Detector Mechanical Studies

Joel Goldstein

University of Bristol

LCFI Collaboration

ALCPG, 30th August 2007



LCFI



#### • Linear Collider Flavour Identification

- Bristol
- Edinburgh
- ► Glasgow
- Liverpool
- Nijmegen
- Oxford
- ► RAL

- Sensors
- Readout
- Mechanics
- Software
- Physics







Physics Motivation
 Mechanical Requirements
 Sensor Support Technologies
 Conceptual Design
 Cooling Studies



# Flavour Physics







- Precision detectors close to interaction point
- Distinguish tracks from secondary vertices
  - Identify, separate b, c quarks and τ leptons
  - Measure charge

ALCPG 30/8/07



# Flavour Tagging



- *b*-tagging fairly robust at the ILC
- c-tagging more detector dependent
  - Measure Higgs branching ratios







Vertex Charge



- Add charge of all tracks associated to vertex
- Identify charge of flavoured hadron
  - Can distinguish quark from antiquark
  - Asymmetries  $\rightarrow$  LEDs,...





### Leakage Rates



- Single missed track causes leaks, e.g.  $B^0 
  ightarrow B^+$
- Sensitive to detector parameters



- inner radius
- point resolution
- coverage
- material





# Optimisation



- Layout barrel vs endcaps
- Material in active volume
- Material outside
  - May depend on sensors, electronics etc.
    - material, temperature...
  - Needs input from simulations and studies
    - tools becoming available





### ILC Vertex Detector





- 800M 20×20µm<sup>2</sup> pixels
- 5 layers, inner radius ~ 1.5 cm
- Gas cooling
  - ▶ 0.1% X<sub>0</sub> per layer
  - Uniform material distribution

LCFI

QX



# LCFI Mechanical Work

I. Support Prototyping

- RVC and SiC Foams
- Carbon Fibre
- Shells
- 2. Conceptual Design
  - Check Compatibility
- 3. Cooling studies
  - Test Rig and Simulations



# Support Options



#### Material target equivalent to 100 µm silicon

- Thinning silicon to 50-100 µm becoming routine
- Thinning to epitaxial possible
- Ladders with bulkheads
  - I. Unsupported silicon
    - can't control lateral curl
  - 2. Laterally stiffened silicon
  - 3. Rigid structures









- 2D scanning system based on Keyence LK-3010M
- Gas-cooled cryostat capable of ~180K







# Thin Substrates



- Longitudinal stiffness from tensioning
- Lateral stiffness from thin substrate
  - Beryllium: good specific stiffness but bad CTE
  - Carbon fibre good candidate
    - 0.09% X<sub>0</sub> test model
    - laterally stability insufficient







# Foam Ladders



- 25 micron silicon on 1.5mm 8% SiC
  - Very rigid
  - Achieved 0.14% X<sub>0</sub>



- 20 micron silicon sandwiching 1.5mm 2% carbon
  - Could be double-sided
  - Achieved 0.07% X<sub>0</sub>



#### More exotic rigid structures possible

ALCPG 30/8/07

# Silicon Carbide





Samples of 8% and 6% relative density obtained

- Lower density believed possible
- Processing techniques being investigated

LCFI

Q\_X



# Glue Placement







 Silicon and SiC substrate in contact  Silicon and SiC spaced by 200 microns of silicone



**RVC** Foam





- Reticulated Vitreous Carbon
  - ▶ 2-3% relative density
  - Not stiff enough for one-sided



### **RVC** Results





Overall bow due to asymmetry in production

- New fixturing being made
- Several features not understood

# FEA Study of RVC





LCFI

0×



# **Conceptual Design**



- Checking feasibility
- Thick foams not easy
  - Layers 1&2 crowded
    - Double-sided layers...?
    - CF shells...?





### **CF** Shells



- CDF and DZero innermost silicon layers
- Prototyping 25cm long ILC structure





UWashington



# Other Concepts





- Combine technology
  - e.g. 2 layers CF shell, 2 double-sided foam
- Complete foam structure



# **Cooling Studies**



- Model of I/4 barrel
  - Can extract >30W at reasonable flow rates
- Calibrating CFD and FSI tools









### International Meetings 👪



- Regular inter-R&D group video meetings
  - VXD Mechanics Meetings
  - Tuesdays at 17:00 RAL/11:00 FNAL
    - ILC-VXD-MECHANICS@listserv.fnal.gov



# Summary



- Mechanical constraints challenging
  - Driven by physics goals
  - Need simulation and electronics input
- Several candidate technologies
  - LCFI focusing on foam ladders, CF shells
- Regular collaborative meetings