HelicalTrackFitter Improvements

Lori Stevens (UCSC/SLAC)

August 31, 2007 SiD Tracking Meeting

Outline

Previous Improvements

New Improvements: outer tracker hits

Results

Future Improvements

Original HelicalTrackFitter

3 Cartesian co-ordinate array arguments
CircleFitter fits a circle to x-y coordinates
If successful, SlopeInterceptLineFitter fits a line to s-z coordinates
If successful, stores parameters and creates

covariance matrix, assuming no correlation between circle and line fits.

Previous Improvements

- Can take TrackerHit list as argument
- Reorders hits: closest to furthest from origin
- Distinguishes between 3D and 2D hits
 - 3D: vertex barrel, vertex endcap, tracker endcap
 2D: tracker barrel

TrackerHit: Type 0 (3D) vs. Type 1 (2D)
Cartesian arrays: dz > 0 (3D) vs. dz < 0 (2D)

New Improvements

4 Cases: Case 1: Only 3D hits (no change) Case 2: 3D hits $\geq =2$; 2D hits $\geq =1$ 2D consistency check Case 3: 1 3D hit; 2D hits >=2 z segmentation fit Case 4: All 2D hits (≥ 3) z segmentation fit

Case 2: 3D >= 2, 2D >= 1 (1 of 2)

Circle (x-y) fit for all points Line (s-z) fit for 3D points Consistency check for 2D points: $\mathbf{z}_{\text{pred}} = \mathbf{s}_{2D}^{*}(\tan \lambda) + \mathbf{z}_{0}$ • $\tan \lambda = \text{lfit.slope}()$ $\blacksquare z_0 = lfit.intercept()$ \blacksquare s = arc length for 2D hit (arc length method)

Case 2: $3D \ge 2$, $2D \ge 1$ (2 of 2)

Calculate zmin & zmax of segment for 2D hit
 Use moduleInfo method taken from my z segmentation code (10cm segments)

Check if predicted z lies between zmin and zmax

Error on z calculated from errors on tan λ and z_0 (lfit covariance matrix), allow $3\sigma_z$

Case 3: 1 3D, 2D >= 2

- Circle (x-y) fit for all points
- ZSegment (s-z) fit for all points
 - Rich Partridge's ZSegmentFitter code
 - 2D hits: zmin & zmax calculated from moduleInfo method
 - 3D hit: zmin & zmax calculated from error on z
 TrackerHits: get error from covariance matrix
 Cartesian array: z error array argument required
 Allow for 3σ_z (segment ≈ 0.05mm)

Case 4: 2D only (>= 3)

Same as Case 3, without 3D segment calculation

Circle (x-y) fit for all points

ZSegment (s-z) fit for all points

Problem #1: Track Cheater

- Possible problem with track cheater
 Hits made with TrackerHitCheater
 Tracks made with CheatTracker
 Driver used is CheatTrackDriver
 Showing more than 5 hits in outer tracker barrel
- Temporary solution: 2D consistency check with no more than 1st five tracker barrel hits

Findable Tracks

Only tracks with 3 or more hits are able to be fit. Tracks with less than 3 hits are cut from the track list and are not part of the total track count.

single muon: muon_Theta1-179_1-50GeV_SLIC_v1r9p3_sidaug05.slcio

qqbar: panpyqqbar-1-1000_SLIC_v1r9p4_sidaug05.slcio

kshort:

K0S_pipi_Theta45-135_5-25Gev_SLIC_v2r0p12_sid01.slcio

Results

	single muon	qqbar	kshort
Total findable tracks	9953	35039	16479
Good fits	9843	29504	14821
Failed fits	110 (1.1%)	5535 (15.8%)	1658 (10.1%)

Why such poor results?...

Problem #2: Low Momentum

2D consistency check (Case 2) does not take into account low momentum and/or scattering ZSegmentFitter ADD SOMETHING HERE Solution: cut out tracks with $pT \le 1.0 \text{GeV}$ For now, redefine findable tracks: Tracks with 3 or more hits • Tracks with pT > 1.0 GeV

New Results (pT > 1.0GeV)

	single muon	qqbar	kshort
Total findable tracks	9221	12684	12645
Good fits	9198	12515	12617
Failed fits	23 (0.26%)	169 (1.3%)	28 (0.25%)

Better, but still room for improvement...

Where are fits failing?

	failed	2D	ZSegment	ZSegment
	fits	check	fit	fit, 1 3D hit
single muon	110	60	46	4
muon > 1GeV	23	23	0	0
qqbar	5535	4633	646	256
qqbar > 1GeV	169	161	2	6
kshort	1658	747	714	197
kshort > 1 GeV	28	24	3	1

2D hit check seems to be main culprit

How many hits are passing/failing? (pT > 1.0GeV)

	single muon	qqbar	kshort
Total hits	29533	29775	7136
Passed	29504	29545	7104
Failed	29 (0.11%)	230 (0.81%)	32 (0.43%)

Well, not too bad...I wonder which hits failed?

single muon

Layer in outer tracker barrel (1 = inner layer, 5 = outer layer)

qqbar

Layer in outer tracker barrel (1 = inner layer, 5 = outer layer)

kshort

Layer in outer tracker barrel (1 = inner layer, 5 = outer layer)

Looking at 3 or 4 outer barrel hits

	Pass fit	Fail fit	Pass fit	Fail fit (3
	(4 hits)	(4 hits)	(3 hits)	hits)
Single muon	9209	12 (.13%)	9213	8 (.09%)
qqbar	12563	121 (.95%)	12617	67 (0.53%)
kshort	12627	18 (0.14%)	12634	11 (.09%)

Future Improvements

Check for problems with Track
 Cheater

Need to account for scattering and low momentum tracks

Study ZSegmentFitter more