

1

Estimating the effects from non-linearities in the ATF extraction line

M. Alabau Pons, P. Bambade, A. Faus-Golfe, F. Zimmermann

IFIC - LAL - CERN

28 September 2007

Layout of ATF2

2

ATF Extraction Line (EXT)

Problem: Measured vertical emittances are higher than expected

Septum magnets + Q7 and Q6 quadrupoles

Study the effect of the non-linearities of the magnets shared with the DR on the vertical emittance

Shared magnets

The beam passes off-axis through the QM6X and QM7X quadrupoles and the BS1X, BS2X and BS3X septum manets.

On-going work

Tracking studies in the ATF Extraction Line:

- Introducing multipole components for the septum magnets and the QM7 and QM6 quadrupoles (from C. Spencer)

-For different beam offsets

to estimate the impact on the emittance of the beam.

On-going work

Particles created with PLACET at the entrance of EXT (50000 particles):

	E ₀ (GeV)	1.3
normalized	γε _x (m rad)	3.0 x10 ⁻⁶
emittances	γε _y (m rad)	3.0 x10 ⁻⁸
	σ_{ϵ} (%)	0.1
	σ _z (mm)	8.0
	ß _{x (m)}	7.212
	ß _{y (m)}	2.903
	α _{x (m)}	1.151
	α _{y (m)}	-1.721

Tracking studies with MAD8 Introducing QM7 multipoles > Which multipoles? ⁶

Quadrupole QM7 (multipole decomposition)

Field map of a Q7-like quadrupole (from C. Spencer)

$$\begin{split} B_y + jB_x &= 0.461 + 17.557z - 959.345z^2 - 1.426 \cdot 10^5 z^3 - 9.898 \cdot 10^6 z^4 \\ &+ 4.93 \cdot 10^8 z^5 + 1.551 \cdot 10^{11} z^6 + 6.512 \cdot 10^{12} z^7 - 9.81 \cdot 10^{14} z^8 \\ &- 9.424 \cdot 10^{16} z^9 + 2.051 \cdot 10^{18} z^{10} + 4.082 \cdot 10^{20} z^{11} - 6.191 \cdot 10^{21} z^{12} - 1.281 \cdot 10^{24} z^{13} \end{split}$$

Multipoles presented by S. Kuroda

(for I = 6 cm)	N	KN	MAD notation
	1	0.00638	K0L
	2	0.2429	K1L
$K(N-1)I = a_N ((N-1)I)I$	3	-26.6	K2L
$K(N-1)L = \frac{B\rho}{B\rho}((N-1))L$	4	-1.18e4	K3L
	5	-3.29e6	K4L
$\int^{24} z^{13}$	6	8.19e8	, K5L

Quadrupole QM7 (multipole decomposition)

Fit:

 $By=0.461227 + 17.5409 x - 975.611 x^{2} - 164998. x^{3} - 1.83452 \times 10^{7} x^{4} + 1.22734 \times 10^{9} x^{5} + 1.03418 \times 10^{12} x^{6} + 8.1599 \times 10^{13} x^{7} - 3.15181 \times 10^{16} x^{8} - 6.10052 \times 10^{18} x^{9} + 6.81761 \times 10^{18} x^{10} + 8.79816 \times 10^{22} x^{11} + 8.10734 \times 10^{24} x^{12} + 2.33606 \times 10^{26} x^{13}$

 $x^{12} + 2.33606 \times 10^{26} x^{13}$ Multipoles (by S. Kuroda)

-0 om	Ν
y=0 cm	1
	2
/Bx-0)	3
DX-0)	4
	5
	6

(for L=6 cm)		
Ν	KN	MAD notation
1	0.00638	K0L
2	0.2427	K1L
3	-27.0	K2L
4	-1.37e4	K3L
5	-6.09e6	K4L
6	2.04e9	K5L

(for L=6 cm)

· · · · · · · · · · · · · · · · · · ·		
Ν	KN	MAD notation
1	0.00638	K0L
2	0.2429	K1L
3	-26.6	K2L
4	-1.18e4	K3L
5	-3.29e6	K4L
6	8.19e8	K5L

Quadrupole QM7 (multipole decomposition)

	(for L=6 cm)		
v-0 om	Ν	KN	MAD notation
y=0 cm	1	0.00638	K0L
	2	0.2427	K1L
(By-0)	3	-27.0	K2L
(BX=0)	4	-1.37e4	K3L
	5	-6.09e6	K4L
	6	2.04e9	K5L

Multipoles (by S. Kuroda)

Ν	KN	MAD notation
1	0.00638	KOL
2	0.2429	K1L
3	-26.6	K2L
4	-1.18e4	K3L
5	-3.29e6	K4L
6	8.19e8	K5L

But this is not the exact length of the magnet*. Recalculating with the real length: L=7.89 cm

Ν	KN	MAD notation
1 (0.00839	KOL
2	0.3192	K1L
3	-35.507	K2L
4	-1.80e4	K3L
5	-8.01e6	K4L
6	2.68e9	K5L

Tracking studies with multipole field for QM7

Vertical emittance with x or y beam offsets

Tracking studies with multipole field for QM7 Vertical emittance with <u>x and y</u> beam offsets

