

ATF2-MDI meeting,15-17 October 2007, Annecy

Cécile Rimbault, LAL Orsay

Impact of beam-beam effects on precision luminosity measurements at the ILC

- Principle of luminosity measurement using Bhabha scattering
- Modifications due to beam-beam effects
- Consequences on reachable luminosity precision
- Dependence with the bunch parameters and energy
- Summary and conclusions

Cécile Rimbault, LAL Orsay

- Bhabha particles are detected in coincidence in the luminosity monitor LumiCal covering a range of 26.2 to 82 mrad.
- $\mathcal{L} = N_{Bh} / \sigma_{Bh}$ from counting rate \rightarrow integrated luminosity ($\Delta \mathcal{L} / \mathcal{L}$: 10⁻³-10⁻⁴)

$$\frac{d\sigma_{Bhabha}}{d\vartheta} \approx \frac{32\pi\alpha^2}{s} \frac{1}{\vartheta^3}$$

Measurement of energy and scattering angle of the Bhabhas
 Iuminosity

 spectrum reconstruction

Beam-Beam effects on Bhabha scattering

- Bhabhas are produced with BHLUMI, \sqrt{s} = 500 GeV, 25<0<90 mrad, **ISR include**
- Beam-Beam effect treatment with GUINEA-PIG (Nominal beam param. used for simul.)
 - Modification of initial state: Beamstrahlung $\rightarrow \sqrt{s} \le \sqrt{s}$, $\Delta \theta_{ini} \ne 0$, $E_{elec} \ne E_{posit}$
 - Modification of final state: Electromagnetic deflections → bhabha angle reduction (~10⁻²mrad) + small energy losses

Consequences on integrated luminosity measurement: Reduction of Bhabha counting rate

First study with the following selection cuts :

 $30 < \theta_{bhabha} < 75 \text{ mrad}$ and $E_{bhabha} > 0.8 E_{beam}$

→ Suppression of Bhabha particles : (N_{theor} – N_{exp})/N_{theor}
 Due to modification of initial state = beamstrahlung: (-3.78 ± 0.04)%
 Due to modification of final state = EM deflections: (-0.65 ± 0.02)%
 Total BHabha Suppression Effect (BHSE): (-4.41 ± 0.05)%

Why is there such an important Bias ?

Reduction of Bhabha counting rate

Angular cuts optimization

Beamstrahlung \rightarrow enhancement of acollinearity: $<\Delta\theta_0> = 1.27 \text{ mrad}$ $<\Delta\theta_1> = 2.00 \text{ mrad}$ The angular cut should not be symmetric: new **asymmetrical** cuts $30 \text{ mrad} < \theta_{-+} < 75 \text{ mrad} \& 26.2 \text{ mrad} < \theta_{+-} < 82 \text{ mrad}$ *ref. A. Stahl LC-DET-2005-004*

Reduction of Bhabha counting rate

Energy cuts optimization

Beamstrahlung & EM deflections: Bhabha energy reduction + energy asymmetry enhancement \rightarrow use global energy cut: $E_+ + E_- > 0.8\sqrt{s}$

Consequences on integrated luminosity measurement: Reduction of Bhabha counting rate

Suppression of Bhabha particles inside the selection cuts $30 < \theta_{bhabha} < 75 \text{ mrad}$ and $E_{bhabha} > 0.8 E_{beam}$:

Due to modification of initial state = beamstrahlung: $(-3.78 \pm 0.04)\%$

Due to modification of final state = EM deflections: $(-0.65 \pm 0.02)\%$

Total BHabha Suppression Effect : (-4.41 ± 0.05)%

Suppression of Bhabha particles inside the optimized selection cuts 30 mrad< $\theta_{1,2}$ <75 mrad & 26.2 mrad< $\theta_{2,1}$ <82 mrad and E₊+E₋ > 0.8 \sqrt{s} : Due to modification of initial state = beamstrahlung: (-1.03 ± 0.04)% Due to modification of final state = EM deflections: (-0.48 ± 0.02)% Total BHabha Suppression Effect : (-1.51 ± 0.05)%

The bias on integrated luminosity measurement is reduced about a factor 3 with 8 asymmetric angular cuts and global energy cut Reconstruction of luminosity spectrum from lumical

θ

 θ_2

from K. Mönig ref. LC-PHSM-2000-60-TESLA

$$x_{theor} = \frac{\sqrt{s'}}{\sqrt{s}} \approx \sqrt{1 - 2\frac{\sin(\theta_1 + \theta_2)}{\sin(\theta_1 + \theta_2) - \sin\theta_1 - \sin\theta_2}} = x_{exp}$$

Experimentally EM deflections have no impact on the reconstructed lumi spectrum

Required reconstruction accuracy to control the BHSE

σ _x [nm]	ℒ[μb⁻¹]	<x<sub>rec></x<sub>	BHSE [%]
555	1.8	0.976	-2.22
755	1.2	0.980	-1.14
Δ		4 10 -3	1 10 ⁻²

• Modification of beamstrahlung with beam parameters

→ modification in luminosity spectrum and mean value

➔ modification in BHSE

• To control the bias on integrated lumi at 10^{-3} , variations in the rec lumi spectrum need to be known with a precision of 4.10^{-4}

Fitting the shapes of the lumi spectra → improvement of sensitivity to beam parameter variation

Sensitivity of BHSE to beam parameters

- BHSE is insensitive to beam offsets, $\Delta_{\!x}$ and $\Delta_{\!y\!,}$, and to longitudinal shifts of the bunch waist
- BHSE is insensitive to the vertical size of the bunch
- BHSE has strong dependence on bunch length, σ_{z} , and horizontal size, σ_{x}

Sensitivity of BHSE to beam sizes

$\frac{\Delta \sigma_z}{\sigma_z}$	$\Delta BHSE_{bslung}[\%]$	$\Delta BHSE_{EMdef}$ [%]	$\Delta BHSE[\%]$
20%	-0.40 + 0.25	-0.15 + 0.10	-0.50 +0.30
10%	$-0.20 \\ +0.15$	$\begin{array}{c} -0.07 \\ +0.05 \end{array}$	$-0.25 \\ +0.15$
5%	-0.10 + 0.05	-0.03 + 0.02	-0.15 + 0.05
0.200.00			
$\frac{\Delta \sigma_x}{\sigma_x}$	$\Delta BHSE_{bslung}[\%]$	$\Delta BHSE_{EMdef}[\%]$	$\Delta BHSE[\%]$
$\frac{\Delta \sigma_x}{\sigma_x}$ 20%	$\begin{array}{c} \Delta BHSE_{bslung}[\%] \\ -1.10 \\ +0.35 \end{array}$	$\Delta BHSE_{EMdef}[\%] -0.10 +0.08$	$\Delta BHSE[\%] -1.20 +0.40$
$\frac{\Delta \sigma_x}{\sigma_x}$ 20% 10%	$\begin{array}{c} \Delta BHSE_{bslung}[\%] \\ -1.10 \\ +0.35 \\ -0.40 \\ +0.20 \end{array}$	$\begin{array}{c} \Delta BHSE_{EMdef} [\%] \\ \hline -0.10 \\ +0.08 \\ \hline -0.04 \\ +0.04 \end{array}$	$\Delta BHSE[\%]$ -1.20 +0.40 -0.45 +0.25

Sensitivity of BHSE to energy

ILC should enable physics runs initially for energies from the Z boson mass to 500 GeV
 → In this energy range beam-beam effects are strongly modified

Relative Energy lost by Beamstrahlung :

$$\delta \propto \frac{N^2 \gamma}{\sigma_x^2 \sigma_z} \propto \frac{N^2 \gamma^2}{\varepsilon_x^* \beta_x \sigma_z}$$

$$\mathcal{L} = \frac{N^2}{4\pi \sigma_x \sigma_y} H_D = \frac{N^2 \gamma}{4\pi \sqrt{\varepsilon_x^* \beta_x \varepsilon_y^* \beta_y}} H_D$$

$$\mathcal{L} \propto \sqrt{\frac{\delta}{\sigma_x}} \frac{P_{beam}}{P_D} H_D$$

Beam angular deflections :

 $\int \mathcal{E}_{y}$

$$x', y' \propto \frac{Nx, y}{\gamma \sigma_{x,y} \sigma_x} \propto \frac{N \sigma_{x,y}}{\gamma \sigma_{x,y} \sigma_x} \propto \frac{N}{\sqrt{\gamma} \sqrt{\varepsilon_x^* \beta_x}}$$

E

Sensitivity of BHSE to energy

ILC should enable physics runs initially for energies from the Z boson mass to 500 GeV
 → In this energy range beam-beam effects are strongly modified

At low energy, EM contribution of BHSE becomes dominant, reaching few 100*10⁻⁴

Summary & Conclusions - 1

• Beam-beam effects on Bhabha scattering increase acollinearity (+0.7 mrad) and energy asymmetry on the Bhabha particles \rightarrow Need to find a compromise with background suppression cuts

- This leads to a bias on the integrated luminosity measurement of few 10⁻²
- This BHSE mainly arises from beamstrahlung (for Nominal ILC)
- The reconstructed luminosity spectrum in the LumiCal is almost not modified by EM deflections -> beamstrahlung can be measured from the lumi spectrum reconstruction
- To control the bias on luminosity measurement at 10⁻³, we would need to reconstruct luminosity spectrum mean value with a precision of 4 10⁻⁴. But a fitting procedure of the lumi spectrum would enable to reach better precision.

• Main dependences are from the horizontal and longitudinal sizes of the bunch. A precision of 20% is needed on their knowledge to limit the error on BHSE from EM deflections to about 10⁻³.

Summary & Conclusions - 2

• No direct way to control experimentally the bias from EM deflections, but measurements of beam angular divergence in extraction line could provide a way to monitor lumi bias from σ_x variations. For σ_z ? →Need to use a simulation tool: CAIN, <u>GUINEA-PIG and GUINEA-PIG++</u> for further studies.

http://flc.web.lal.in2p3.fr/mdi/BBSIM/bbsim.html https://trac.lal.in2p3.fr/GuineaPig

• For the GigaZ option, a precision of 10^{-4} is needed for the luminosity, while the bias from EM deflections is >100 x 10^{-4} ... \rightarrow need more complete studies.

• "Impact of beam-beam effects on precision luminosity measurements at ILC", C. Rimbault, P. Bambade, K. Mönig, D. Schulte, EuroTeV-Report-2007-017, JINST 2 P09001.

Status of GUINEA-PIG++ simulation

Work develop at LAL with Guy Le Meur and François Touze

- GP++ use configuration management environment CMT → easy compilation
- GP++ versioning, updating and releasing achieved with **SVN**
- GP++ is distributed on the web software development tool **TRAC**:

https://trac.lal.in2p3.fr/GuineaPig

- GP++ code can be run both on 32-bit and **64-bit** computers.
- New keyword **rndm_seed** allows to choose the random generation seed.
- Physics simulation improvement: easy interface to apply beam-beam effects on Bhabha event input files + photons treatment.
- Automatic GRID sizing option.
- All results are now in the main output file, with units !!!
- Time performance optimization: parallel computation in development. ¹⁷