

Update on Tuning Studies for the ATF2

James Jones, Anthony Scarfe ASTeC/Cockcroft Institute

Daresbury Laboratory

Overview

- At the previous meeting, discussions centred on:
 - The effect of higher order terms not present in MAD-8
 - The effects of errors on the generation of tuning knobs
 - Application to the ATF2 control system
- Work has been slow in the past year
- New Post-Graduate student has begun work
 - Anthony Scarfe, joint CASE student between Manchester University and STFC Daresbury Laboratory

Beam Rotation Matrix

• Create tuning knobs from $beam_{err} \rightarrow beam_0$ rotation matrix:

$$R = beam_0^{-1}.beam_{err} - I$$

- Where the beams are normalised to 0 at the centre.
- From the 4 response matrices (one for each degree of freedom), tuning knobs are created.
- Have 36 (6x6) possible tuning knobs -
 - To improve orthogonality choose 17

dpx, dpx', dpy, dpy', xx, xx', xy, xy'

Beam Rotation Matrix

• Results in simulation are better than the traditional method.

DIMAD

- Initial thoughts were that DIMAD was the correct higher order tracking code to use
 - Similar input to MAD-8
 - Rapid use of existing infrastructure
 - Experience within group
- Experience so far:
 - Comparison to MAD-8 has been less than stellar
 - Many difficulties not expected
 - Lead-in time much longer than expected

Orbit Correction

- Anthony Scarfe has been progressing DIMAD code
 - Optimisation of MAD-8 code to DIMAD
 - Optimisation of trajectory correction
 - Which is a limiting factor in the tuning simulations
- Code is almost ready to run now
- Have produced a DIMAD-to-Mathematica package
 - Available to everyone
- Some computations still needs to be done in MAD-8

Next Steps

- We need to understand the ATF/ATF-2 control system
 - Most important factor in applying technique to actual beam at KEK
 - Attendance this year will allow us to understand the implementation and limitations of control system
 - Implement requisite changes in simulations
- Specifications of the movers and power supplies is also important
 - Could be the limiting factor in achieving minimal emittance at IP

Conclusions

- We know from previous work that the simulation technique "works"
- Additional cross-checks with higher-order tracking code is still ongoing
- Progress is really dependent on implementation with the ATF2 control system and the limitations on the movers and magnet power supplies
- As I have been saying for many years,
 - Would like an integrated simulation, to make better comparisons with the work of Glen White
 - Never had enough manpower before now...