# Stable support for FD 

A.Jeremie, B.Bolzon, N.Geffroy

Andrea JEREMIE

## Outline

- Measurements on table
- Work done by G. Durand with drawings
- Discussion on table length

Measurements on table (since ATF2 meeting in Hamburg)

## Set-up

Therop
-Empty table on four supports
-FFTB Movers just put on table, not fixed ( $\sim 162 \mathrm{~kg}$ )
-Measurements on FFTB movers
No mass yet


Guralp seismometer and Endevco accelerometer one each on the floor and on the table (or mover)


State of the art inertial sensors B.Bolzon

# $\checkmark$ NI PCI-6052 Multifunction DAQ 

| PCI-6052E | Quantity | Resolution | Rate | Conversion | Range | Noise |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Analog <br> Input | 8 Differential/ <br> 16 Single-ended | 16 its | Up to $333 \mathrm{kS} / \mathrm{s}$ | Successive <br> approximation | $\pm 0.05$ to 10 V | 60 uV from <br> DC to 1 MHz |
| Analog <br> output | 2 Single-ended | 16 bits | $333 \mathrm{kS} / \mathrm{s}$ | Successive <br> approximation | $\pm 10 \mathrm{~V}$ |  |

> Compatible Matlab/Simulink (Softwares used for the algorithm)


Empty table


With movers


Andrea JEREMIE
Main peak slightly above 50 Hz

## ITapp Amplitude spectral density on ATF2 floor

Ground motion measurements done on ATF floor by KEK colleagues

## Empty table



Andrea JEREMIE



Main peak still around 50 Hz , but lots of additional peaks

Andrea JEREMIE

## 44me Amplitude spectral density on mover



Andrea JEREMIE


## Relative motion between table and floor at ATF Ring

$\checkmark$ Integrated Root Mean Square of relative motion at ATF Ring:

> Integrated RMS of relative motion with masses of 1400 Kg :

- From 0.17Hz to 100Hz: $6.7 \mathrm{~nm} \rightarrow$ Above ATF2 tolerances ( 6 nm )!!
- From $\mathbf{1 0 H z}$ to $\mathbf{1 0 0 H z}$ (first eigenfrequency bandwidth): $5.0 \mathrm{~nm} \rightarrow$ Tight


## Near future work

- Measurements with weights
- Finalise how mover is fixed on table and measure

Work done by G. Durand with drawings

Complete system for QC3 magnet (QD0 and QF1)


## Complete system for QC3 magnet (QD0 and QF1)

art1.1 (Part1.5)
ocle_LAPP (Socle_LAPP.1)
ocle_LAPP (Socle_LAPP.2)
cle_LAPP (Socle_LAPP.3)
tg_plate_type_1.1 (mtg_plate_type_1.1)
roduct1.1.2.3.4 (Product1.1)
itg_plate_type_1 (mtg_plate_type_1.2)
roduct1.1.2 (Product1.2)
Product1.1.2.3 (Product1.3)
mtg_plate_type_1.1.2 (mtg_plate_type_1.3)
15.5_shaft (15.5_shaft. 1)
15.5_shaft (15.5_shaft. 2)
os 1206 ETN9 ( 1206 ETN9.1)
-5 1206 ETN9 (1206 ETN9.2)
.5 1206 ETN9 (1206 ETN9.3)
-
-at Product1.1.3 (Product1.1.3.1)

- $0_{0}$ Product1.1.3.5 (Product1.5)
- 

. Part2.1 (Part2.1.2)
moteur (moteur.1)
moteur (moteur.2)
moteur (moteur.3)
Product11 (Product11.1)
Part45 (Part45.1)
$\delta_{0}$ Product1.1.3.5.7 (Product1.6)
(o) Product13 (Product13.1)
+- ${ }_{2}^{2}$ ANSI_B18_22_1_PLAIN_WASHERS_NARROW_TYPE_A (ANSI_B18_22_1_PLAIN_WASHERS_NARROW_TYPE_A. 1
+क्यANSI_B18_22_1_PLAIN_WASHERS_NARROW_TYPE_A. 33 (ANSI_B18_22_1_PLAIN_WASHERS_NARROW_TYPE_A.2)
+-ANSI_B18_22_1_PLAIN_WASHERS_NARROW_TYPE_A.2 (ANSI_B18_22_1_PLAIN_WASHERS_NARROW_TYPE_A.3)
$\mathrm{A} \mid+\mathrm{Q}_{22}$ ASME_B18_21_1_REGULAR_HELICAL_SPRING_LOCK_WASHERS.11 (ASME_B18_21_1_REGULAR_HELICAL_SPRING_LOCK_WASHERS. 1 )
A

* 2ndASME_B18_21_1_REGULAR_HELICAL_SPRING_LOCK_WASHERS. 5 (ASME_B18_21_1_REGULAR_HELICAL_SPRING_LOCK_WASHERS.2)
- $\ddagger$ 2n ASME_B18_21_1_REGULAR_HELICAL_SPRING_LOCK_WASHERS.32 (ASME_B18_21_1_REGULAR_HELICAL_SPRING_LOCK_WASHERS.3)

Larger magnet with shimming and LVDTs can still fit if some extra holes are done
phwhwhunn? -0
prot ${ }^{2}$


New T-plate (need two large movers, but only one available, so transformed one small mover in large mover by doing a new T-plate) unchanged New T-plate can accommodate larger magnet (shimming)

Andrea JEREMIE


## Discussion on table length

Andrea JEREMIE


## From Marc Woodley's

## FF: MS2FF and Final Doublet

 presentation on July 18
scale: 6 inches (drawing) $=1$ meter (beamline)
Andrea JEREMIE

- Hi Andrea, In ATF2v3.7Layout.ppt, the dashed lines around magnets represent the approximate extent of the coils; the lengths quoted for the magnets are the core lengths (not the effective lengths).
- The center-to-center separations of the magnets are what defines the layout:
- QD2AFF -> SF1FF : 4875 mm center-to-center
- SF1FF -> QF1FF : 575 mm center-to-center
- QF1FF -> SD0FF : 790 mm center-to-center
- SDOFF -> QDOFF : 575 mm center-to-center
- QDOFF -> IP : 1225 mm center-to-IP -Mark




## Last words

- Current configuration leads to a table that is 10 cm too short:
- Do we change configuration to fit on the table?
- Do we change the table (3000)? But does the layout allow this?
- Do we ignore the 10 cm ?
- Concrete block can be made to any dimension whereas the table has fixed constraints (length, height, hole configuration...)=> need to adapt

