

Stable support for FD

A.Jeremie, B.Bolzon, N.Geffroy

- Measurements on table
- Work done by G. Durand with drawings
- Discussion on table length

and any and and a set of a set of the set of

Measurements on table (since ATF2 meeting in Hamburg)

Set-up

Empty table on four supports
FFTB Movers just put on table, not fixed (~162kg)
Measurements on FFTB movers
No mass yet

Guralp seismometer and Endevco accelerometer one each on the floor and on the table (or mover)

Sensitivity

Garanteed

frequency

range

Quantity

1V→1 mm/s

1 - 315 Hz

66

2

State of the art inertial sensors

B.Bolzon

and any also and a set a pallo where a second and a second and a second and a second and a part of a second and a second as a

✓ NI PCI-6052 Multifunction DAQ

1V→0.625mm/s

0.033 - 50 Hz

2

1V→1 mm/s

2

0.1-50 Hz

PCI-6052E	Quantity	Resolution	Rate	Conversion	Range	Noise
Analog	8 Differential/	16bits	Up to 333kS/s	Successive	±0.05 to 10V	60uV from
Input	16 Single-ended			approximation		DC to 1MHz
Analog	2 Single-ended	16 bits	333kS/s	Successive	±10V	
output				approximation		

Fast card

Low noise card

Compatible Matlab/Simulink (Softwares used for the algorithm)

Sensors				SP500B			ENDEVCO86		
Sensitivity				2000V/m/s			10V/g		
Frequency range				0.0167 – 75Hz			0.01 – 100 Hz		
Integrated electronic noise above 4Hz			: 4Hz 🚺 1	30.0	35nm		0.6nm		
Quantity	r				2		2		
Sensors	VE-13	Guralp CMG-	SP400U	GSV-320	ENDEVCO				
		40T			86	nm s	tabilisation		
	· · · · · · · · · · · ·		• · • · · ·						

1V→0.5 mm/

1 - 315 Hz

2

1V→0.1g

1-100 Hz

2

equipment exists

Empty table

With movers

Main peak slightly above 50Hz

Ground motion measurements done on ATF floor by KEK colleagues

Empty table

With movers

> Integrated RMS of relative motion with masses of 1400Kg:

- From 0.17Hz to 100Hz: 6.7nm → Above ATF2 tolerances (6nm)!!

- From 10Hz to 100Hz (first eigenfrequency bandwidth): 5.0nm→ Tight

Near future work

allow all and a set a

- Measurements with weights
- Finalise how mover is fixed on table and measure

and an all and a set a

Work done by G. Durand with drawings

Complete system for QC3 magnet (QD0 and QF1)

(SME B18 21 1 REGULAR HELICAL SPRING LOCK WASHERS.32 (ASME B18 21 1 REGULAR HELICAL SPRING LOCK WASHERS.3

T-Plate_mm (T-Plate_mm.1) Part1.1 (Part1.3) Part1.1 (Part1.4) Part1.1 (Part1.5) Socle_LAPP (Socle_LAPP.1) Socle_LAPP (Socle_LAPP.2) Socle_LAPP (Socle_LAPP.3) 🐜 mtg_plate_type_1.1 (mtg_plate_type_1.1) Product1.1.2.3.4 (Product1.1) mtg_plate_type_1 (mtg_plate_type_1.2) • Product1.1.2 (Product1.2) Product1.1.2.3 (Product1.3) 💠 🛼 mtg_plate_type_1.1.2 (mtg_plate_type_1.3) 🦣 15.5_shaft (15.5_shaft. 1) 🗣 🛼 15.5_shaft (15.5_shaft.2) 💁 1206 ETN9 (1206 ETN9.1) 🗼 1206 ETN9 (1206 ETN9.2) 🔶 🕵 1206 ETN9 (1206 ETN9.3) 🗼 1206 ETN9 (1206 ETN9.4) 🗣 🐘 Product1.1.3 (Product1.1.3.1) 🗣 🎭 Product1.1.3.5 (Product1.5) 🙀 Part3 (Part3.1) 🐘 Part2.1 (Part2.1.2) 🖌 moteur (moteur. 1) moteur (moteur.2) 🐜 moteur (moteur.3) Product11 (Product11.1) 💁 Part45 (Part45.1) 🛼 Product1.1.3.5.7 (Product1.6) Product13 (Product13.1) 🔜 ANSI_B18_22_1_PLAIN_WASHERS_NARROW_TYPE_A (ANSI_B18_22_1_PLAIN_WASHERS_NARROW_TYPE_A,1) ANSI_B18_22_1_PLAIN_WASHERS_NARROW_TYPE_A.33 (ANSI_B18_22_1_PLAIN_WASHERS_NARROW_TYPE_A.2) 🔍 ANSI_B18_22_1_PLAIN_WASHERS_NARROW_TYPE_A.2 (ANSI_B18_22_1_PLAIN_WASHERS_NARROW_TYPE_A.3 ASME_B18_21_1_REGULAR_HELICAL_SPRING_LOCK_WASHERS.11 (ASME_B18_21_1_REGULAR_HELICAL_SPRING_LOCK_WASHERS.1) 😹 ASME_B18_21_1_REGULAR_HELICAL_SPRING_LOCK_WASHERS.5 (ASME_B18_21_1_REGULAR_HELICAL_SPRING_LOCK_WASHERS.2

lapp

Α

Larger magnet with shimming and LVDTs can still fit if some extra holes are done

T-plate

also states to a fair pite . However a second and for a fair fair a fair of a second and fair a fair

New T-plate (need two large movers, but only one available, so transformed one small mover in large mover by doing a new T-plate) unchanged New T-plate can accommodate larger magnet (shimming)

and a fight and a set a share fille a state of the second and for a farmed and second and for a farmed for a second and the second

Discussion on table length

FF: MS2FF and Final Doublet

From Marc Woodley's presentation on July 18

allow allow the set of a gale - they where a second and for a farmed and a second and for a second and the seco

scale: 6 inches (drawing) = 1 meter (beamline)

- Hi Andrea, In ATF2v3.7Layout.ppt, the dashed lines around magnets represent the approximate extent of the coils; the lengths quoted for the magnets are the core lengths (not the effective lengths).
- The center-to-center separations of the magnets are what defines the layout:
- QD2AFF -> SF1FF : 4875 mm center-to-center
- SF1FF -> QF1FF : 575 mm center-to-center
- QF1FF -> SD0FF : 790 mm center-to-center
- SD0FF -> QD0FF : 575 mm center-to-center
- QD0FF -> IP : 1225 mm center-to-IP -Mark

and a self of the second s

	Table length mm	2400	3000	
	Price €	15240	≈16500	
	delivery	12 weeks	12 weeks	
	"Free" first eigenfrequency (TMC value)	230Hz	185Hz	
	Simulated Four feet empty eigenfrequency	56Hz		
	Simulated Four feet 1400kg eigenfrequency	26Hz		
	Simulated totally fixed empty eigenfrequency	526Hz	629Hz	
Andre	Simulated totally fixed 1400Kg eigenfrequency	132Hz		

Last words

alog al free days a faither the particular and an a fair a f

- Current configuration leads to a table that is 10cm too short:
 - Do we change configuration to fit on the table?
 - Do we change the table (3000)? But does the layout allow this?
 - Do we ignore the 10cm?
- Concrete block can be made to any dimension whereas the table has fixed constraints (length, height, hole configuration...)=> need to adapt