Thoughts on experimental background studies @ ATF2 to validate BDSIM/GEANT4 computation

Marc Verderi LLR/Ecole polytechnique

> Annecy meeting October 2007

My few words of caution...

- Still very new to ATF(2)
- In many places, I am guessing what the situation is
 - And try to elaborate from there...
 - I will be happy to be corrected when wrong, incomplete, or if "shaking" misleading ideas...

Some considerations (1/2)

- Background simulation has an intrinsic interest as a kind of "service task" to the ATF2 collaboration

 Prediction of background levels in BSM/BPM
- For monitors (I would guess that) "little" precision is sufficient
 - Background prediction up to a "not too big factor"
 - 2 ? 10 ? (question to you ;-) !)
 - Main considerations (I guess) are:
 - Radiation level low enough to not damage devices
 - Radiation level low enough to have devices operating properly

Some considerations (2/2)

- Can targeting higher background prediction precisions be of interest ?
 - Probably not if ATF2 were a "final" experiment in itself
 - Background monitoring would be relevant and sufficient
 - So, may be yes, as what can be learnt may serve as a basis to try to extrapolate to the high energy machine
 - If "good" precision in background prediction can be achieved in ATF2, this may make us confident in the simulation for the high energy machine
- In addition to the "golden goals" of ATF2, we may use the ATF2 phase to prototype the background simulation
 - Identifying the critical points
 - Elaborate simulation techniques
 - Perform dedicated background measurements
- In the following, I will try to give my naïve view on these items

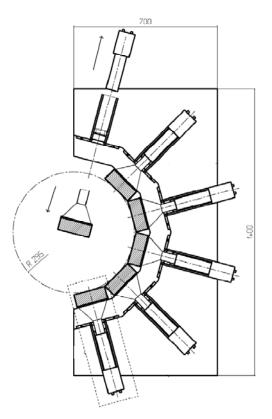
Identifying critical points ? (1/2)

- Beam halo is a well identified issue
 - A realistic background simulation will rely on the halo knowledge/measurement
- Geometry
 - Inner beam line description is made simple
 - Will need to be refined at some point
 - Fortunately as line optic element position, shape... are known, improvements in line with real beam line look doable
 - Outside of line description is more "tricky"
 - External counterpart of matter of optic elements can be guessed
 - But far to be the only volumes in the tunnel...
 - May we hit, at some stage, the problem of a sizeable fraction of background scattered from the outside of the beam line and back into measurement devices ?

Identifying critical points ? (2/2)

- Physics processes
 - A large fraction of interactions is due to EM physics
 - In general well under control in simulation
 - But what about neutron production, and transport, for example ?
- Other ?

Elaborate simulation techniques ?


- At present, obtaining statistics with BDSIM/Geant4 simulation looks a time consuming process
- We proposed in June the idea of introducing the "event biasing" technique
 - E.g. importance sampling
 - Can be of potential interest
 - But have to evaluate when, where to apply
 - ... and how.
- Other techniques ?

Perform dedicated background measurements ?

- Performing background measurements would of course be a vital point to validate the simulation
- Share the experience and measurements on the BSM/BPM devices is a clear necessity.
- We should anticipate dedicated measurements in addition
 - And take advantage of this meeting to discuss ideas about this !

Possible devices for bgk measurements

- Csl crystal ring
 - For photons & electrons flux
 - Was used during BaBar commissioning

- A "mini-TPC"
 - Charged tracks
 - Used during BaBar commissioning as well

Neutron counting?

- Neutron production can occur through photo/electronuclear processes
- What rate may we expect ?
- Example of neutron counter:
 - Taken from BaBar MDI:
 - BF₃ tube surrounded by a moderator (polyethylene) to slow down the neutrons:
 ¹⁰B+n→Li(0.84 MeV)+α(1.47 MeV)+γ(0.48 MeV)
 ¹¹B+n→⁷Li(1.02 MeV)+α(1.78 MeV)
 - Combination a several counters can provide information on the source location

Conclusion

- We may take advantage of ATF2 to prototype also the background simulation
 - Useful for ATF2
 - Possible basis for the future high energy machine
- Critical points, trying simulation techniques, and implementing dedicated background measurements might be easier in a not too large scale experiment like ATF2
- "Human scale" experiment ATF2 would certainly help with easier interactions and communications between members