Emittance growth study in the existing ATF EXT

F. Zhou SLAC

Other major contributors: S.Selestiky, A. Seryi, M. Woodley

Thank J. Amann, C. Spencer for magnetic modeling

Outline

- Field mapping of the QM7 and BS1X
- Generation of local bumps in the EXT
- Simulation on emittance growth with the local bumps
- Discussion on beam experiment
- Summary

Field map of QM7 and BS1X

F. Zhou/SLAC

EXT local bump generation

x (m), y (m)

F. Zhou/SLAC

x (m), y (m)

F. Zhou/SLAC

Either x or y offset: vertical emittance growth

- Either x or y offset in the existing EXT channel
- Includes QM7+BS1X multipoles

Combined x and y offset: vertical emittance growth

- Combined x and y offset in the EXT channel
- QM7+BS1X multipoles.

F. Zhou/SLAC

Phase spaces at EXT end

F. Zhou/SLAC

Vertical emittance dependence of energy spread

Beam experiment

- Observe the effects vs different bump amplitude; it can help us to understand the emittance growth source, and also how well the coupling correction:
 - Only x or y bumps
 - W/o correction
 - W/ correction
 - Combined x+y bumps
 - W/o correction
 - W/ correction
- Total 6 correctors needed to generate local bumps; 4 correctors (2 H and 2 V) already exist, another H corrector probably already exists.

Stripline kicker test layout

Hardware requirements

- Corrector parameters:
 - Horizontal 5 mm offset
 - 1.5mrad (max);
 - B*L=6E-3 T.m; B~0.14 T assume L=5cm (probably ready by the Naito experiment)
 - Vertical offset 1.5 mm offset
 - 0.3 mrad (max)
 - B*L=1.3E-3 T.m; B<0.03 T assume L=5 cm (suggest to install it)
 - Spaces look available
- Suggest to install 1 V (+ 1 H) corrector.

Need to close the ring orbit

x (m), y (m)

Summary

- Initial γε_y is 30 nm. Final emittance and phase spaces are measured at the existing EXT end. No magnet errors employed except the QM7 and Septum1 multipoles.
- Tracking results:
 - At the nominal position: only x-offset does not create vertical emittance growth while only y-offset create vertical emittance growth w/o corrections.
 - Combined both x and y offsets create severe vertical emittance growth w/o corrections; combined offsets x/y=5/1mm and 5/1.5mm can create 30% and 50% vertical emittance growth after all corrections.
- The beam test will be helpful to understand the emittance growth source and also how well the coupling correction.
- What we need to do:
 - To install 1 V (+ 1 H) corrector
 - Mark is investigating to close up orbit in BT line