ATF/ATF2 research program and present orientations at KEK for ILC

Ongoing unique test facility for ILC with a low emittance beam

1. Outline of ATF

2. Achievement of ATF so far

3. Future plan

4. Present orientations

5. Prospect of ATF

Junji Urakawa (KEK) for

the ATF International Collaboration

2007/10/15

IC Achievement of ATF

1. Emittance in Damping Ring.

1nm-rad horizontally, 4pm-rad vertically at low intensity

- 2. ILC Fast kicker development. 3ns fast rise time
- **3. DR BPM upgrade program. <1micron resolution. By SLAC and FNAL et al. collaboration**

4. Multi-bunch turn-by-turn monitor. For FII study, kicker

- 5. nm BPM experiment. 17nm resolution achieved. By SLAC, LLNL, KEK et al.
- 6. FONT4 experiment. digital feedback. By Oxford et al.
- 7. Laser Wire at EXT-line. fast scan wire for ILC. By RHUL et al.

Emittance measured by CW Laser wire

Laser wire beam size monitor in

14.7μm laser wire for X scan 300mW 532nm Solid-state Laser 5.7μm for Y scan fed into optical cavity (whole scan: 15min for X, 6min for Y)

2007/10/15

Beam kick test of ILC Fast kicker (KEK, LLNL, SLAC, DESY; FID Co.)

Pulse Train/(3000 pulse)Output from FID Pulsercy07

X to Y coupling Improvement

20µm BPM Resolution with old circuit (1997-2002)

3µm BPM Resolution with present circuit (2003-2007)

Upgrade of BPM Resolution (~ $0.1\mu m$) with new circuit by SLAC and FNAL. Surely, we will achieve 2pm-rad. Possibly 1pm.

ATF2 IP-BPM

- measure beam jitter at the focal point of ATF2
- produce a feedback signal for beam stabilization
- requirements

, 📮 goal

- ultimate high resolution (a few nm)
- less sensitivity for beam angle
- special cavity BPM
 - rectangular shape (X:5.7GHz, Y:6.4GHz)
 - thin cavity for angle signal reduction
 - small beam tube for high sensitivity
- status
 - various properties were checked with beam (position sensitivity, angle sensitivity, etc.)
 - 8.7nm reslution was achieved by 3-bpm measuremant

By Yosuke Honda (KEK) in 2007

Laser-wire at ATF-EXT

6min 43s 40 $\sigma = 6.22 + -0.18 \,\mu\text{m}$ 35 1600 Beam size (μm) 30 1400 1200 25 Airgel / current 1000 20 800 15 600 10 400 JAI, RHUL and KEK 5 200 ag datataraat 0 led by Grahame Blair. 0. 60 65 70 3.02 3.04 3.06 3.08 3.10 QD4X (A) Wire position (mm) Modify optical lens to realize sub-micron laser waist size.

2007/10/15

Annecy07

∎∎⊥

85

. ₫

80

75

Future plans

- ATF2 project
- Fast ion instability study with flat beam
- Fast Kicker R&D
- Feed-forward to stabilize the extracted beam
- High Intensity pol. gamma-ray generation based on Compton Scattering

ATF2 Status for BDS R&D

ATF2 Project (34nm Final Focus beam line)

- **Status**
 - •Optics&beam line design fixed.
 - Construction Schedule re-planed and fixed.
 - •Q-magnet from IHEP.
 - •Q-BPM from PAL.
 - •Electronics for Q-BPM from SLAC.
 - •High Availability power supply for magnet from SLAC,
 - •IP-BPM under beam test. (KEK, KNU)
 - •Laser Interference monitor upgraded. (Tokyo Univ.)

ic ATF2 Beam line layout

P^{2007/10/15} P~34nm vertical size

Annecy07

Area for ATF2, 15/Oct./2007

Floor refurbishment was finished at the end of Sep.

3m

Side: 1~1.5m thick, Top: 1m thickAccess EntranceInner width: 5m
2007/10/15Moving shield door
Annecy07Side: 1m, Top: 0.5m, Imer width: 3.5m
19

Q-magnet from IHEP (IHEP, SLAC, KEK) ~ 30 magnets were delivered.

Cavity-BPM for Q-magnet from PAL (PAL, KEK) ~ 40 BPMs were delivered.

High Availability P.S. for Q-mag, Bend and Sext (SLAC) 1 unit was tested. Delivery in 2007.

ATF2 development Highlights

Laser Interference Monitor at ATF2 IP(Tokyo Univ.)

FFTB ~70nm -> ATF2 34nm modification : Laser wavelength fringe stabilization FB 2007/10/15 new gamma detector^{cy07}

Shintake-monitor from FFTB

22

Posssible location for Fast Ion Study

Possible location of Gas inlet chamber for fast ion study

South straight section of ATF damping ring

2007/Mar/02 N.Terunuma, KEK

To make good pressure bump

Detailed Experimental plan

- A. Measurement of vacuum pressure and the main components of gas species.
- B. Effects of pressure and bunch current: With different pressure conditions (2.0x10⁻⁵ Pa in pressure bump) by injecting nitrogen gas); With different beam: 1 train, N of bunch =2~20, 5x10⁹~2x10¹⁰/bunch
- c. Gap effect
 - repeat B with 2 and 3 bunch trains,
 - repeat B with different length of gaps.
 - repeat above with a different emittance (emittance ratio :changed by skew quads from 0.5% to 10%.)

Feedforward to Extraction Line to supply stable and very flat beam : Establishment of position stability 1μm (rms) and 10prad vertical emittance at EXT until end of 2007.

Layout of KEK-ATF Extraction Line

µm Feedforward (DR BPM -> EXT Line new stripline kicker)

Cavity BPM (MM1X-MM5X) sensor cavity

Present orientations

- Increase bunch charge to 2×10^{10} .
- Maintain vertical emittance 4pm or achieve smaller one.
- Find and reduce coupling source around extraction area.
- Reduce orbit jitter.
- Establish quick and precise beam profile diagnostic.
- Increase number of bunch/train for multi-bunch/train operation at ATF2.

Prospect of ATF

ATF International R&D will generate necessary results for ILC, especially how to control high quality beam, develop many kinds of advanced instrumentation, educate young accelerator physicists and engineers.

- ILC like beam which means 30 bunches with bunch spacing 308nsec, in the future.
- Realization of 34nm beam for long period.