Background studies On ATF2

Hayg GULER LLR-Ecole Polytechnique, France

ATF2 Meeting, October 15th-17th 2007

From HALO to Background

 Halo Measurements @ATF -2005 → Suehara-san $-2006 \rightarrow$ Lawrence Deacon BDSIM-Simulation and input beam HALO – Flat distribution HALO - Losses/background extraction - Background vs signal Conclusions, Open points

Background sources

Beam Core/Halo

The current theories calculate the rms emittance growth. The rms value is									
a useful quantity	THE CORE EMITTANCE WITH	ribution-but intra-							
beam scattering	INTRABEAM SCATTERING IN e ⁺ /e ⁻ RINGS*	mb scattering has a							
non-Gaussian dis	T. O. Raubenheimer	n due to the scatter-							
ing will have a r	Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94809	n have a significant							
contribution to the rms width; the core is due to the multiple soft scattering,									
while the tails arise from the infrequent hard scatterings.									

Particle Process: Intra Beam Scattering ♦ "Tail cut" criteria: - Exclude rare scatterings: i.e. small impact parameter with rate smaller than damping rate. - Consider only particles in the Gaussian core. 10⁰ (b) 10^{-1} 10^{-2} Non corrected Gaussian 10^{-3} MC simulation ($\sim 1/x3$) 10-4 corrected distribution 10⁻⁵ 0 8 4 Hayg GULER - Meeting ATF2 5

 $X(\sigma_{x})$

7202A1

Beam Halo (measurement in 2005)

• 10^7 events outside 10σ (Suehara-san)

Beam Halo Measurement (2)

Lawrence Deacon, Pavel Karataev, Grahame Blair, RHUL ATF2 meeting, KEK, May 9th 2007

Halo measured using wire scans
Fitted to a function
Fraction of beam in halo estimated
Halo width versus core width

Beam Halo Measurement (2)

Fit : sum of two Gaussians and a linear function

Hayg GULER - Meeting ATF2

Background photons

At the final doublet

HALO propagation \rightarrow BDSIM

BDSIM : Beamline Simulation Toolkit based on GEANT4 Possibility to generate and track secondary particles Possibility to include Mokka-type (complicated) geometry \rightarrow from database

Signal Photons (From Shintake monitor group)

Category	Parameter	Value	Unit	Reference	Dependence	comments
Compton cross section				SLAC-PUB-8012		1
	Electron energy	0.0013	TeV		Complicate(Large -> Small)	(
	Laser photon energy	2.3000	eV		Almost inverse	
	X of Compton scattering	0.02287350				(
	Thomson cross section	6.65	x10^-25[cm2]			/
	Compton cross section	6.50228558	x10^-25[cm2]			
Photon density						
	Laser bunch energy	200	mJ		Linear	100+100mJ
	Electron charge	1.60E-19	С			/
	Bunch population	5.43478E+17	Photons			/
	Pulse length	5.5	ns		Inverse	1 sigma, Gaussian
	Beam radius	15	um		Inverse	1 sigma, Gaussian
	Light speed	3.00E+08	m/s			/
	Pi	3.14159				
	Bunch volume (Gaussian eff)	5.85E-09	m3			
	Bunch volume (z integrated)	1.56E-04	m2		Gaussian beam	
	Photon density (z integrated)	3.49E+21	photons/m2			
Scattered photons						
	Electron bunch population	1.00E+10	Electrons		Linear	
	Scattered photons(ave.)	2272				
	Scattered photons(max.)	4545				
				T		
				lambda	1.064	
				w0	3.2	
				f	458.2	
October 15th	<u>17th,</u>			W	48.49502959	
2007		Hayg GU	LER - Meeti	ing ATF2		12

Flat Halo Study

How large will be the HALO ?

- Gaussian HALO not realistic because drop too rapidly
- Ideally a HALO would have a 1/x³ 1/x⁵ tails
- Simulate how a flat tail would generate background
 - ◆ 50 σ to 200 σ Beam HALO @ the entrance of the FF → use 100% background

 Use BDSIM to simulate the beam transportation on the FF line part

Beam Losses and Secondary generation

 Losses versus z

 50σ Flat HALO (4mm)
 200σ Flat HALO (16mm)

 @200σ, losses are more important specially @small-z

Background photons energy

5k e- Generated

 Bunch population : 2x10¹⁰
 Beam Core Electrons and about 0.1-1 % e- in the HALO (2x10⁷ to 2x10⁸ e-)

Background Photons inside 1m Background Photons inside 10cm

Inside a cylinder around the IP:

- Less than $4.0 \ 10^6$ photons inside 1m
- Less than 4.0 10⁵ photons inside 10 cm
- More events at large-d from zaxis for 200σ Halo beam than 50 σ Halo beam

ER - Meeting ATF2

Conclusion-Next steps

 ◆ Background estimation @ IP → Number of photons not "too large"

- Try more "realistic" HALO distribution in order to better estimate the number of background photons around the IP (measurements in Nov. 2007 ?)
- Use collimators to eliminate background photons
- Study backscattered photon from the DUMP

Compare input size to the one at QF1

Compare 9σ to (3σ +Linear) HALO

Reconstructed particles energy 9σ Halo

- beam pipe radius = 4 cm
- beam pipe thickness = 1.6 mm
- 10000 generated electrons
- Energy = 1.3 GeV (dE = 0.1%)
- Generated using BDSIM using a Placet generated Guineapig type distribution file Beam Halo : 9σ (40 % events)

Energy Loss for a 9σ HALO

October 15th-17th, 2007

Hayg GULER - Meeting ATF2

10³

10²

10

25

30

?5

40

45

z

Background population (FF) 10⁴ e⁻ generated with 9σ HALO (E>1MeV)

Background population (FF) 10⁴ e⁻ generated with 9σ HALO (E>1MeV)

Background photons energy

9σ Halo

 70k e⁻ Generated
 Bunch population : 2.0¹⁰ Beam Core Electrons

Background Photons inside 1m Background Photons inside 10cm Background Photons inside 1cm

Inside 1m around the IP:
 - 10⁵ to 10⁶ photons (0.1-1% HALO)
 Inside 10cm around the IP : 10 times less