

1

Estimating the effects from non-linearities in the ATF extraction line

M. Alabau Pons, P. Bambade, A. Faus-Golfe, F. Zimmermann IFIC - LAL - CERN

15th October 2007

ATF Extraction Line (EXT)

Study the effect of the non-linearities of the magnets shared with the DR on the vertical emittance

Septum magnets + Q7 and Q6 quadrupoles

Shared magnets

The beam passes off-axis through the QM6X and QM7X quadrupoles and the BS1X, BS2X and BS3X septum manets.

On-going work

Tracking studies in the ATF Extraction Line:

- Introducing multipole components for the septum magnets and the QM7 and QM6 quadrupoles (from C. Spencer)

-For different beam offsets

to estimate the impact on the emittance of the beam.

On-going work

- Create distribution of particles with PLACET (50000 particles) at the entrance of EXT (KE1X) with different x/y beam offsets (transverse Gaussian distribution, uniform flat momentum distribution)

-Tracking with MAD8 (SR)

-Reading emittance in the last wire scanner (MW4X):

On-going work

Properties of the beam at the EXT entrance (KE1X):

normalized	E ₀ (GeV)	1.3	[y (mm) x (mm)	Beam offsets
	$\gamma \epsilon_x$ (m rad)	3.0 x10 ⁻⁶			
	γ_{ϵ_v} (m rad)	3.0 x10 ⁻⁸	1 -		0 – 1.4
	· y () /	0.4			0 - 5.0
	σ_{ϵ} (%)	0.1			
	σ_{z} (mm)	8.0			
	ß _{x (m)}	7.212			
	ß _{y (m)}	2.903			
	α _{x (m)}	1.151			
	α _{y (m)}	-1.721			

Tracking studies with MAD8 introducing only QM7 multipoles

Quadrupole QM7 (multipole decomposition)

Field map of a Q7-like quadrupole (from C. Spencer)

QM7 Multipoles used:

N	KN	MAD notation
1	0.008393025	KOL
2	0.319194707	K1L
3	-26.54876593	K2L
4	-11839.7016	K3L
5	-3287021.959	K4L
6	818592369.1	K5L
7	1.5452E+12	K6L
8	4.54134E+14	K7L
9	-5.47305E+17	K8L

Fit presented by F. Zhou and S. Seletskiy (25th April 2007)

 $-9.424 \cdot 10^{16} z^9 + 2.051 \cdot 10^{18} z^{10} + 4.082 \cdot 10^{20} z^{11} - 6.191 \cdot 10^{21} z^{12} - 1.281 \cdot 10^{24} z^{13}$

Ν	KN	MAD notation
1	-0.00894	KOL
2	0.39808	K1L

20% difference

(from EXT.mad file)

Tracking studies with multipole field for QM7

Vertical emittance vs horizontal beam offsets

Vertical emittance vs vertical beam offsets

Tracking studies with multipole field for QM7 Vertical emittance with <u>x and y</u> beam offsets

