Experiments on deflection of charged particles in Japan for ILC and J-PARC.

S. Strokov

Hiroshima University

Collaborators

V. Biryukov, Yu. Chesnokov

Institute for High Energy Physics, Russia
S. Sawada

KEK - High Energy Accelerator Research Organization
T. Takahashi, I. Endo, M. Iinuma, H. Sato, K. Ueda

Graduate School of Advanced Sciences of Matter, Hiroshima University

Contents

1. Introduction to the channeling effect
2. Motivation
3. Experiment on electron beam deflection (REFER, Hiroshima University)
4. Experiment on proton beam deflection (Proton Synchrotron, KEK)
5. Possible applications at J-PARC and ILC
6. Future experiments
7. Summary

Introduction

(channelling effect)

positive particles \rightarrow planar channeling negative particles \rightarrow axial channeling
$\theta<$ critical (Lindhard) angle \rightarrow channeling effect
$\theta>$ critical (Lindhard) angle \rightarrow no channeling effect

Introduction (beam steering)

- Deflection of POSITIVE particles by BENT crystal

- Deflection of NEGATIVE particles by STRAIGHT crystal

Introduction

(beam steering)

- Deflection of POSITIVE particles by BENT crystal using volume reflection

Motivation

To develop techniques of beam handling systems using crystals

- establishment of bent crystal systems for the proton beam separation
- getting basic understanding for the electron beams (not so well studied as in case of protons)

Future applications

- proton beam separation at J-PARC (Japan Proton Accelerator Research Complex)
- electron beam collimation at ILC (International Linear Collider)
- electron extraction system at the REFER ring (Relativistic Electron Facility for Education and Research) at HU

Experiment on electron beam deflection (REFER ring, Hiroshima University)

REFER ring @ Hiroshima University

REFER (Relativistic Electron
Facility for Education and Research)

REFER ring @ Hiroshima University

Extraction line

Schematic view of the setup

- the < 100> axis was roughly aligned to the beam direction
- each combination of θ and ϕ angles and a beam profile at the FOS plate was recorded

Fiber Optic plate with a Scintillator (FOS)
thickness of Si crystal: $16 \mu \mathrm{~m}$

Experimental setup

Setup

Data Acquisition system

The procedure of grabbing pictures and moving two goniometers was synchronized with the beam gate.

Pictures were taken only when electron beam hit the FOS plate.

Experiment: beam divergence

Beam divergence as a function of QM3 current

(it was estimated from the measurements and calculations of the optics of the beam line)

Vertical angle dependence of the profile is changing in a range from 2.0 A to 2.6 A
Lindhard angle for <100> axis of Si crystal: 0.7 mrad Beam divergence > Lindhard angle

Beam profiles

QM3: 2.0 A, $\theta=0, \phi=-1.5 \mathrm{mrad}$
Beam divergence: 3.0 mrad

QM3: 2.6 A, $\theta=0, \phi=-1.5 \mathrm{mrad}$ Beam divergence: 5.2 mrad

Analysis

Vertical beam divergence: 3.0 mrad QM3: 2.0 A

Projected beam profile was fitted with double Gaussian

Beam center was determined as the weighted average in 2σ region

Deflection angle $=$ change of the beam center +2.34 m
Vertical beam divergence: 3.0 mrad $\theta=0$ mrad (QM3: 2.0 A)

Results

Vertical beam divergence:
$3.8 \mathrm{mrad}(\mathrm{QM} 3: 2.2 \mathrm{~A})$.
$\theta=0 \mathrm{mrad}$

Vertical beam divergence:
5.2 mrad (QM3: 2.6 A).
$\theta=0 \mathrm{mrad}$

Results

Deflection vs. beam divergence

The magnitude of the deflection, Δ, was determined by fitting the plot with 1 st derivative of Gaussian function

Larger beam divergence \rightarrow Smaller deflection

Simulation

Lindhard string continuous potential

$$
U_{a x}(\rho)=\frac{2 Z_{1} Z_{2} e^{2}}{d} \ln \left[1+\left(C \frac{a}{\rho}\right)^{2}\right]^{1 / 2} \begin{aligned}
& a-\text { Thomas-Fermi radius } \\
& \rho-\text { distance from <100> axis } \\
& d-\text { lattice constant, it is } 5.43 \mathrm{~A} \text { for } \mathrm{Si} \\
& Z_{1} e-\text { charge of incident particle } \\
& \mathrm{Z}_{2}-\text { atomic number, } 14 \text { for } \mathrm{Si} \\
& C-\text { Lindhard constant } \mathrm{Sqrt}[3]
\end{aligned}
$$

Conditions for simulation

- $4^{\text {th }}$ order of Runge-Kutta method
- Without consideration of single and multiple scattering, channeling radiation and crystal imperfection
- To save a computational time the incident angles of particles was limited to the twice of the Lindhard angle
- Energy of electrons: 150 MeV
- Thickness of the crystal: $16 \mu \mathrm{~m}$

Simulation: trajectory

Trajectory of the $150-\mathrm{MeV}$ electrons inside of the Si crystal

Initial position : $\mathrm{X}=-2.5 \AA, \mathrm{Y}=-2.5 \AA$
X direction $=0.1 \mathrm{mrad}$
Y direction $=0.01 \mathrm{mrad}$

Initial position : $\mathrm{X}=0 \AA, \mathrm{Y}=-2.5 \AA$
X direction $=0.095 \mathrm{mrad}$
Y direction $=0.09 \mathrm{mrad}$

Simulation

Beam divergence: 3.0 mrad

Beam divergence: 5.2 mrad

Larger beam divergence \rightarrow Smaller deflection

Simulation

Comparison with experimental data

Beam divergence: 3.0 mrad

Beam divergence: 5.2 mrad

The tendency of the deflection as a function of the vertical direction of the crystal (ϕ) is same. But, in quantitative comparison, the peak-to-peak difference of the deflection angle of the measurement is about 0.4 mrad , while it's around 0.04 mrad for the simulation.

Simulation

The possible reason of quantitative difference is that in reality the electrons which travel in the crystal with angles more than Lindhard angle can also be trapped by the potential of the crystal, while the simulation cannot take into account the processes for particles with the large beam divergence.

Simulation which includes all physical processes should be performed.

Summary on REFER experiment

- Deflected $150-\mathrm{MeV}$ electron beam by using <100> axis was clearly detected in this experiment.
- It showed clear evidence of ability to use crystals for handling negatively charged particles.
- The beam deflection as a function of the beam divergence was systematically investigated. Such technique can be used to determine the beam divergence.
- Simulation of this experiment was performed as well. Comparison of the experimental data with simulation showed:
- qualitative agreements
- quantitative comparison showed difference - additional simulation which includes all physical processes should be done.

Experiment on proton beam deflection (Proton Synchrotron, KEK)

Experiment at KEK-PS

Schematic drawing of the experiment

Experimental setup

Crystal, proton beam

Parameters of crystal

Material: \quad Silicon	
Size: $\quad 3 \times 0.3 \times 10 \mathrm{~mm}$	
Bending angle:	$\sim 32.6 \mathrm{mrad}$
Plane:	(111)
Lindhard angle:	0.051 mrad

Parameters of the proton beam

Energy: 12 GeV
Intensity: 10^{12} protons/spill Size: $15 \times 12 \mathrm{~mm}$
Divergence: < 5 mrad

Data Acquisition system

The procedure of grabbing pictures and movement of goniometers was synchronized with the beam gate.

33

Typical pictures

dependence agreed with the estimations

$10^{12} \mathrm{pps} \rightarrow \sim 10^{7} \mathrm{pps}$ of deflected beam

Theoretical crystal efficiency

To understand the results of the experiment, the crystal efficiency was calculated
Crystal efficiency $=A_{S} A_{B} \exp \left[-\frac{L_{\text {crystal }}}{L_{d}^{\text {bent }}}\right]$
A_{S} - probability of the particle being captured into the channelling mode for the straight crystal
$A_{B} \quad$ - reduction factor in case of bent crystal
$L_{\text {crystal }}$ - length of the crystal
$L_{d}{ }^{\text {bent }}$ - dechanneling length for the bent crystal

$$
\begin{aligned}
& L_{d}=\frac{256}{9 \pi^{2}} \frac{E \beta^{2}}{\ln \left[2 m_{e} c^{2} \gamma / I\right]-1} \frac{a d_{p}}{Z_{1} r_{e} m_{e} c^{2}}, \begin{array}{l}
I-\text { ionization potential } \\
\gamma-\text { Lorentz factor } \\
R_{c}-\text { critical radius }
\end{array} \\
& L_{d}^{\text {bent }}=L_{d}\left(1-\frac{R_{c}}{R}\right)^{2}, \\
& \beta-\text { radius of the bent crystal } \\
& \text { terms of the speed of light in }
\end{aligned}
$$

Experimental crystal efficiency

Beam divergence and normalization factor are needed to be known to find Crystal Efficiency

Simulation: CATCH code

The CATCH code is widely used for the tracking of positive particles through the crystal.

Lindhard planar continuous potential

$$
U_{p l}(\rho)=2 \pi N d_{p l} Z_{1} Z_{2} e^{2}\left[\sqrt{\rho^{2}+C^{2} a^{2}}-\rho\right]
$$

a - Thomas-Fermi radius
ρ - distance from (111) plane
$d_{p l}$ - distance between the planes (2.35 A for (111) planes)
$Z_{1} e$ - charge of incident particle
Z_{2} - atomic number of crystal material (14 for Si)
C - Lindhard constant Sqrt[3]

Conditions for simulation

- single and multiple scattering of the protons on electrons and nuclei are included,
- such crystal imperfections as roughness of the surface and possible amorphous layer were taken into account.

Simulation

Simulation vs. Experimental data

(1)

Simulation vs. Experimental data

Searching of χ^{2} minimum

$$
\chi^{2}=\frac{1}{n-p} \sum_{i}^{n} w_{i}\left(y_{i}^{e x p}-y_{i}^{s i m}\right)^{2}
$$

n - number of data
p - number of adjustable parameters (=2)
$y_{i}^{\text {exp }}$ - i-th experimental vaue
$y_{i}^{\text {sim }}$ - data from the simulation
$\omega_{i}=1 / \sigma_{i}^{2}$ - weight of each experimental point, where σ_{i} is a standard deviation

Beam divergence found to be 0.6 mrad , and the normalization for deflected beam intensity 1/0.93

Simulation vs. Experimental data

Experimental intensity of the deflected beam compared with the best fitted simulation for the beam divergence of $\mathbf{0 . 6} \mathbf{~ m r a d}$ and normalization factor for the d. b. intensity of $1 / 0.93$.

Simulation vs. Experimental data

Position of the deflected beam at the distance 145 cm from the crystal compared with the simulation.

Crystal efficiency

Using both experimental data and the results of simulation

N deflected $=$ Crystal Efficiency x
Angular Efficiency x
N incident upon the crystal. \square

Crystal Efficiency was 23\%

Estimated theoretical value was 21%

Summary on KEK-PS experiment

- Experiment on the deflection of proton beam by the bent crystal was successfully done - we could clearly observe deflected beam.
- A Monte-Carlo simulation was used to find the beam divergence and normalization factor.
- Using results of simulation and experimental data a deflection efficiency was found to be 23% which is consistent with the theoretical estimation of 21%.

Possible applications for
 ILC, J-PARC, and REFER

ILC

Creation of system to remove beam tails

Spoiler - copper	8.6 mm thick	$\left(0.6 X_{0}\right)$	X_{0} is the radiation length
Absorber - copper	4.3 m thick	$\left(30 X_{0}\right)$	
Bent crystal - silicon 2 mm thick	$\left(0.02 X_{0}\right)$		

Deflection efficiency for the 2 mm Si crystal which is bent at 0.1 mrad and $250-\mathrm{GeV}$ positrons is 80%
deflected tails can be localized

J-PARC (Japan Proton Accelerator Complex)

50 GeV proton beam with the intensity of 10^{14} protons per second
Benefits of using crystals in a deflection device for J-PARC

- smaller beam profile (few mm^{2}) and emittance compare with the conventional extraction systems,
- smaller beam losses.

REFER ring

Creation of the system to extract $150-\mathrm{MeV}$ electron beam

Replace aluminium energy degrader by the crystal will reduce energy losses and increase the intensity of extracted beam.
---- extraction trajectory of the electron beam.

Future experiments

KEK-ATF

Basic studies for development of beam collimation system for ILC at KEK-ATF
beam divergence angle < Lindhard angle (0.24 mrad)

Plan:

1. experiments on the electron beam deflection using straight crystal
2. experiments on the beam separation with a bent crystal
3. basic studies on the beam collimation
4. test at the ATF2 extraction line in future

KEK-ATF/ATF2 layout

Beam energy : 1.28 GeV
Low Emittance $\mathrm{X}: 1 \times 10^{-9}$ rad m $Y: 1 \times 10^{-12} \mathrm{rad} \mathrm{m}$
test for deflection and collimation

Proposed setup

Crystals for KEK-ATF experiment

Dechanneling length 44 um

2. Anticlastic angle

J-PARC experiment

- 30 GeV proton beam
- Deflection angle 1°
-(111) plane of silicon crystal

Crystal for J-PARC experiment

Conventional bending device

Summary

In some cases the crystal can be good replacement for the conventional deflection systems. However possible radiation and heating damages of the crystal should be study beforehand.

For the ILC and REFER ring applications, additional investigations are needed:

- an experiment on the channeling of ultra-low emittance electron beam will be performed at the KEK-ATF,
- if above experiment will be successful, an experiment at ATF2 will be proposed.

As for the proton beam:

- investigations of the possible thermal and radiation damages have to be done,
- collaboration with the Fermilab on the experiments with the proton beam,
- experiments with the low energy proton beam will be performed at the J-PARC.

Thank you!

