Dark Matter and the ILC

Abdelhak DJOUADI

LPT Orsay

Dark matter and SUSY

Zwicky (1933) \Rightarrow WMAP (2003-2007) \Rightarrow PLANCK (2008):

The Univers is made by \sim 25% of cold dark matter (CDM)

- Past: galaxy rotation, formation of big structures, ...
- Present: WMAP measur. of temperature anisotropies in CMB, ...

$$\Omega_{\rm DM}\,h^2\!\simeq\!0.11\!\pm\!0.006\Rightarrow0.09\!\leq\!\Omega_{\rm DM}\,h^2\!\leq\!0.13$$
 at 99% CL

- ullet Future: PLANCK satellite will measure $\Delta\Omega_{
 m DM}\,h^2$ at $\sim2\%$
- \Rightarrow Needs a particle that is neutral, weakly interacting, massive, stable.

No such a type of particle in the Standard Model.

In SUSY: this is possible and the neutralino χ_1^0 is the best candidate:

- electrically neutral and (often maybe too) weakly interacting
- massive: $m_{\chi^0_1}\gtrsim 50$ GeV in constrained models
- stable if R–parity, $\mathbf{R_p} = (-1)^{2s+3B+L}$, is conserved.

Question: does χ_1^0 has the right cosmological relic density?

Calculation of the cosmological relic density

• Early Universe: χ_1^0 in thermal equilibrium (production=annihilation). Evolution of the number density given by Boltzmann equation:

$$dn_{\chi_1^0}/dt + 3Hn_{\chi_1^0} = -\langle v \, \sigma_{\rm ann} \rangle (n_{\chi_1^0}^2 - n_{\chi_1^0}^{\rm eq \, 2})$$

• χ_1^0 decouples from bath of SM particles at a temperature

$$x_F \equiv m_{\chi_1^0}/T_F = 0.38 M_P \langle v\sigma_{\rm ann} \rangle c(c+2) m_{\chi_1^0} (g_* x_F)^{-1/2} \sim 20 - 25$$

The present relic density (normalised to the critical density):

$$\Omega_{\chi} h^2 = \frac{2.13 \cdot 10^8 / \text{GeV}}{\sqrt{g_*} M_P J(x_F)}$$
, with $J(x_F) = \int_{x_F}^{\infty} \frac{\langle v \sigma_{\text{ann}} \rangle(x)}{x^2} dx$

The annihilation cross section is given by

$$v \, \sigma_{\rm ann} \equiv v \, \sigma(\chi_1^0 \chi_1^0 \to {\rm SM \, particles}) = a + bv^2 + \mathcal{O}(v^4)$$

 \cdots HEP job: calculate exactly $\sigma_{\rm ann}$ (a et b) and measure as precisley as possible $m_{\chi_1^0}\cdots$ and all the parameters entering the game.....

(co)Annihilation of χ_1^0 in cMSSM

Calculation of $\sigma(\chi_1^0\chi_1^0 \to {\rm SM\,particles})$ rather complicated:

• Many possible final states ($\Phi_i=h,H,A,H^\pm$; f= au,b,t,..): $\chi^0_1\chi^0_1\to f\bar f,WW,ZZ,\Phi_i\Phi_i,\Phi_iZ,H^\pm W^\mp \ {
m etc....}$

• Several channels might be present; for example in $\chi_1^0\chi_1^0 \to f \bar f$:

Co-annihilation processes to be taken into account:

$$\chi_1^0 + \tilde{P} \leftrightarrow X + Y$$
 and $\tilde{P} + \tilde{P}^{(*)} \leftrightarrow X + Y$ if $m_{\tilde{P}} \sim m_{\chi_1^0}$

- SUSY parameter space to handle. In fact:
- General MSSM too complicated ($105 \rightarrow 22$ free paramaters).
- Work simpler and more predictivity in constrained MSSMs.
- Example, in mSUGRA: $m_0, m_{1/2}, A_0, \tan \beta$, sign(μ).

Determination of spectrum in mSUGRA

Very complicated:

- RGEs (two loops)
- EWSB (iterations)
- Masses, couplings, etc...
- Radiative corrections

Sophisticated RGE programs:

- example of SuSpect

(Kneur, Moultaka, AD)

other programs exist....

(Isajet, SoftSUSY, Spheno, ...)

Viable parameter space:

- choose inputs, param. scan
- impose known constraints

(TH, M_h , HPM, DM, ...)

Low energy input: $\alpha(M_Z)$, $\alpha_S(M_Z)$, M_t^{pole} , M_τ^{pole} , $m_b^{\overline{\text{MS}}}(m_b)$; $\tan \beta(M_Z)$ Radiative corrections $\Rightarrow g_{1,2,3}^{\overline{\text{DR}}}(M_Z)$, $Y_\tau^{\overline{\text{DR}}}(M_Z)$, $Y_b^{\overline{\text{DR}}}(M_Z)$, $Y_t^{\overline{\text{DR}}}(M_Z)$ First iteration: no SUSY radiative corrections.

One– or two–loop RGE with choice: $g_1 = g_2 \cdot \sqrt{3/5}$ $M_{\rm GUT} \sim 2 \cdot 10^{16} \; {\rm GeV}$

Choice of SUSY-breaking model (mSUGRA, GMSB, AMSB, or pMSSM). Fix your high-energy input (mSUGRA: $m_0, m_{1/2}, A_0, \text{sign}(\mu), \text{etc...})$.

Run down all parameters with RGE to m_Z and $M_{\rm EWSB}$ scales

First iteration: quess for $M_{\rm EWSB}$.

EWSB: μ^2 , $\mu B = F_{\text{non-linear}}(m_{H_u}, m_{H_d}, \tan \beta, V_{\text{loop}})$ $V_{\text{loop}} \equiv \text{Effective potential at 1-loop with all masses.}$ $First\ iteration:\ V_{loop}\ not\ included$

Check of consistent EWSB (μ convergence, no tachyons, simple CCB/UFB, etc...)

Diagonalization of mass matrices and calculation of masses / couplings Radiative corrections to the physical Higgs, sfermions, gaugino masses.

First iteration: no radiative corrections.

Check of a reasonable spectrum:

– no tachyonic masses (from RGE, EWSB or mix),

–information provided on fine-tuning, CCB/UFB conditions,

–calculation of MSSM contributions to: $\Delta \rho$, (g-2), $b \rightarrow s \gamma$.

An $(m_{1/2}, m_0)$ scan in mSUGRA with $A = 0, \mu > 0$

Good DM regions in mSUGRA

Generically, four/five regions with the required ammount of DM: bulk region, focus point, co-annihilation, A pole and h pole.....

High precision measurements to perform

- Suppose that except for $\sigma_{
 m ann}$ and $m_{\chi_1^0}$ all parameters are known (leave to cosmologists the precisle determination of $H,x_F,g_*,...$).
- Measure everything: masses, production cross sections and asymmetries, decay widths and BRs in sparticle and Higgs production
- Determine the couplings of these particles (in practice softs terms) when including RC and all experimental and theoretical errors....
- Inject all in Ω_χ or $\sigma_{\rm ann}$ and check if OK with WMAP or PLANCK If yes, Bingo! A great success of HEP and/plus COSMO If not, we have a problem:
- determination of other cosmological parameters?
- maybe there is something else than SUSY CDM?
- other thoughts/nightmares....

A very hard theoretical and experimental work to get to this point:

- High precision is needed: only ILC can achieve this.....

Region 1: annihilation via h exchange

Region 2: annihilation via A exchange

Region 3: co–annihilation with stau leptons

The staus are almost degenerate with the LSP neutralinos! Z. Zhang.

Region 4: focus point region

The lightest χ_1^\pm and next-to-lightest χ_2^0 are almost degenerate with χ_1^0 !

Region 5: light stop scenario

The lightest χ_1^\pm should be almost degenerate with the lightest stop! A scenario that is favored is SUSY has to explain EW baryogenesis!

Conclusions

SUSY has natural DM candidate: χ_1^0 .

WMAP and PLANCK: $\Omega_{\rm DM}h^2$ very precise.

An important goal is to determine/check the value of $\Omega_{\rm DM}h^2$ in collider physics,

i.e: measure all parameters which enter in.

LHC can provide a 10–100% determination.

Only ILC provides a $\mathcal{O}(1\%)$ determination!

However, in many cases needs LSP degeneracy with some sparticle...

Production of NLSP at ILC leads to soft $f+E/(ilde{ au} o au \chi_1^0, \chi_2^0 o qar{q}\chi_1^0$,

 $ilde{t}
ightarrow c \chi_1^0$...) which are subject to the huge two-photon background.

Moralité: we need a very good calorimeter in the very forward region.

So please do a good job!