

# Investigation of CVD Diamonds as Sensor Material for BeamCal

Alexandr Ignatenko

FCAL Collaboration Meeting, Orsay October 6~7, 2007

## Overview

Poly- and single crystalline CVD diamond samples
pCVD diamonds investigation

 Results from testbeam'06
 Results from testbeam'07

scCVD diamond investigation

 Results from testbeam'07
 Initial polarization studies

Summary

### Poly- and single crystalline CVD diamond samples CVD diamond samples





pCVD diamonds active area 10x10 mm<sup>2</sup>, Ti-Pt-Au metallization thickness 500 µm

scCVD diamond area 5x5 mm<sup>2</sup>, thickness 340 µm, metallization Ø3mm

October 6-7, 2007

# pCVD diamonds investigation

### pCVD diamonds investigation



### Rather similar behavior: first pumping, then CCD decrease



October 6-7, 2007

FCAL Collaboration Meeting



FCAL Collaboration Meeting

#### **Results from testbeam'07**



Similar behavior: first pumping, then the CCD decreases

October 6-7, 2007



Before irradiation

After irradiation before UV illumination

After irradiation, UV illuminated



October 6-7, 2007

FCAL Collaboration Meeting



2500



# scCVD diamond investigation

# scCVD diamond investigation





### Initial polarization studies







### Summary

- 1. Both poly- and single crystalline CVD diamond sensors stood the absorbed doses of several MGy and still were able to operate properly.
- 2. Values of CCD after irradiation being less than that before, increased after absorption additional (low) doses.

#### To be done:

- 1. Understand the mechanism of damage.
- 2. Clarify the dependence of CCD on dose, doserate and other factors.
- 3. Discuss with manufacturers the possibility to provide more radiation hard samples in future.