GLD IR Overview

T. Tauchi, MDI/Integration WG meeting 4 October 2007

GLDc, IRENG07 Compact GLD (GLDc)

Tolerances in Detectors

Table 1: Tolerances for background in VTX, TPC and CAL.

Sources :	pairs	disrupted beams/pairs	beam halo
Detector	Hits	Neutrons	Muons
VTX	1×10^4 hits/cm ² /train	$1 \times 10^{10} \text{ n/cm}^2/\text{year}$	-
TPC	$4.92 \times 10^5 \text{ hits}/50 \mu \text{sec}$	$4 \times 10^4 \text{ n}^*/50 \mu \text{sec}$	$1.2 \times 10^3 \mu / 50 \mu sec$
CAL	$1 \times 10^{-4} \text{ hits/cm}^3/100 \text{nsec}$	_	$0.03 \ \mu/{\rm m}^2/100{\rm nsec}$

* : The neutron conversion efficiency is assumed to be 100% in the TPC.

1 hit in TPC consists of 5 pads(1mmx6mm) x 5 buckets(50nsec)A muon creates 1 pad x 2000 buckets in parallel to the beam line.A neutron creates 10 hits in TPC.

Note : $0.005\mu/bunch by two "tunnel fillers"$ $\rightarrow 0.8\mu/150bunches$

The 9 and 15m long spoilers at 660 and 350m from IP reduces muons by 10⁻⁴

Background in GLD-VTX T,Nagamine Efficiencies for different hit rates

IR Optimization

FCAL inner radius for TPC background hits.

Hole radius of extraction to decrease backscattering.

Radius of beam pipe @VTX

VTX (FPCCD, $5\mu m \times 5\mu m$ pixels) Si wafer length = $|\cos\theta| < 0.95 + 2 mm$ Ladder length = Si wafer length + 15 mm

Pair background

- Simulation by CAIN
- B-dependence (Track density: 1/cm²/BX)

Results

ECM	Option	В	R _{core}	R _{Be}	R _s	R _{VTX}	Z _{VTX}
(GeV)		(T)	(mm)	(mm)	(mm)	(mm)	(mm)
500	Nominal	3	10.5	12.5	30	16.6	52.4
		4	9	11	28	14.9	47.4
		5	7.5	9.5	25	13.2	42.0
500	High L	3	16.5	18.5	42	24.1	75.4
		4	13.5	15.5	36	20.2	63.6
		5	12	14	33	18.4	57.9
1000	High L	3	18.5	20.5	42	25.8	80.5
	High L'	3	13	15	34	19.4	61.1
	High L"	3	11.5	13.5	32	17.8	56.1

 R_{VTX} has a weak B dependence ${\sim}1/B^{1/2}\,$, but it has strong dependence on machine parameter set

Interaction Region Design

Standard

Table 2: IR geometrical data with 2 (20)mrad crossing angle; numbers in parentheses are those at 20 mrad crossing angle, while the others are common at the both angles. $R_{Be} = 1.5cm$

Rvtx= 2.0cm

	E _{cm}	$500 { m GeV}$				1TeV	
	para.set	Nominal		High Luminosity		High Luminosity-1	
	position	R in cm Z in cm		R in cm	Z in cm	R in cm	Z in cm
	А	1.3	4.5	1.9	6.3	1.5	5
Q	В	3(3.2)	25	4.2	25	3.4(3.5)	25
	С	3(3.2)	35	4.2	35	3.4(3.5)	35
	D	8	110	9(10)	110	8(9)	110
	Е	8	230	9(10)	230	8(9)	230
	F	9.04	260	10.2(11.3)	260	9.04	260
	G	11.94	285	12.60(13.26)	285	11.94(12.60)	285
	Н	16	320	16	320	16	320
	Ι	16	400	16	400	16	400
	J	$2(2^*)$	400	$2(2^*)$	400	$2(2^*)$	400
	K	$2(2^*)$	405	$2(2^*)$	405	$2(2^*)$	405
	L	$2(2^*)$	430	$2(2^*)$	430	$2(2^*)$	430
	М	$2(2^*)$	450	$2(2^{*})$	450	$2(2^*)$	450
J \ M K L	N	13	230	14(15)	230	13(14)	230
	0	17.70	260	18.83(19.96)	260	17.70(18.83)	260
	Р	36	260	36	260	36	260
	Q	17.96	430	19.83(21.70)	430	17.96(19.83)	430

TPC hit

FCAL Inner Radius Optimization

The purpose is to optimize forward calorimeter (FCAL) inner radius to decrease TPC background.

Default value of FCAL inner radius was determined by simple head on geometry.

But \cdots we have to verify it by full simulation.

No. of particles entered TPC as a function of FCAL inner radius

full simulation (Jupiter) : statistics/10 bunches with anti-DID

Collimation: Spoilers and Masks

Table 3: Major collimators' location from IP, aperture, length and material (ILCFF9).

name	Location	Thickness	Material	Aperture			
	m	Xo		x(mm)	y(mm)	$\mathbf{x}(\sigma_x)$	$y(\sigma_y)$
SP2	1483.27	0.6	Copper	0.9	0.5	8	65
SP4	1286.02	0.6	Copper	0.9	0.5	8	65
SPEX	990.42	1	Titanium	0.5	0.8	10	62
MSK1	49.81	30	Tungsten	7.8	4.0	16	178
MSK2	13.02	30	Tungsten	7.4	4.5	12	151

Masks for synchrotron photons note: last bends at 108m from IP

Apertures have been optimized by A. Drozhdin for higher B field. (BDIR05)

Synchrotron Radiations at IP, by LCBDS

GLD : Preference of L* > 4.7m

γ back scattering

GLDc, IRENG07

Pacman design and FD support

Summary

- 1. GLD will evolve to GLDc for the push-pull scheme, while we need detailed evaluation for optimization with full simulation.
- GLD IR region has been optimized with respect to backgrounds (pairs, synchrotron photons, muons ..) at VTX, TPC and minimum veto angle for 2 photon process.
- 3. Relevant parameters for IR optimization are listed below;

Machine parameter sets	1TeV, HiLum-1	
L* (m)	4.5	same at GLDc
B (Tesla)	3	3.5 at GLDc
R _{Be} (cm)	1.5	z < 5cm
Rvtx (cm)	2.0	FPCCD
VTX angular acceptance	cos <0.95	3 super-layers
RFCAL (cm)	8	z=2.3m
RBCAL (cm)	1 and 1.8	z=4.3m
QD0,FCAL,BCAL support	canti-lever	W-tube

Beam pipe at FCAL/LumiCAL

