The Interaction Region Design of LDC

Karsten Buesser

ILD MDI Working Group Meeting 04. October 2007

The Large Detector Concept

Size: ~12m x 12m x 12m (not that large)

ILD MDI Phone Meeting

LDC Interaction Region

- Vertex Detector VTX
- Silicon Intermediate Tracker SIT
- Forward Tracking Disks FTD
- Beam pipe design which minimises the amount of material in front of the LumiCal (Bhabha scattering)

LDC Forward Region

- L*=4.05 m
- 14 mrad crossing angle
 - 2 and 20 mrad exist as alternative
- Tungsten absorber around BeamCal
- LumiCal: precision luminosity measurement via Bhabha scattering
- BeamCal: pair signal measurement, hermeticity to <5 mrad
- Calorimeters centred on outgoing beam
- LowZ absorber

LDC 14 mrad Interaction Region in GEANT4

14 mrad crossing angle with anti-DID field (1:10)

A. Vogel

Forward region design (compressed view 1:2)

Forward Region Modification

K. Buesser 🙀

Preliminary changes, need to be studied in detail:

- Modified LumiCal simplifies detector opening procedure
- ECAL ring extends to lower angles to cover the gap between LumiCal and ECAL
- No tungsten tube around BeamCal
- Tungsten shield attached to HCAL

Detector Opening Concept

ILD MDI Phone Meeting

Background Suppression

Forward Region Design Principle:

- Absorb pairs from beamstrahlung on the BeamCal and in the beam pipe
- Trap backscattered particles in the area between LHCAL and BeamCal
- Low-Z absorber in front of the BeamCal (not shown in the figure) reduces backscattering
 Tungsten shield around the hot BeamCal area

Beamstrahlung Pairs on the BeamCal

K. Buesser 🙀

VTX Hits

Neutrons passing any VTX layer (with double counting)

- \blacksquare 1.7 \pm 2.9 per BX for ILC-NOM-500
- \blacksquare 8.6 \pm 10.4 per BX for ILC-LOWP-500

Normalisation per unit area (total surface is 2.8 · 10³ cm²)

Normalisation per nominal run time with $\int \mathcal{L} dt = 500 \, \text{fb}^{-1}$

- 3.9 · 10¹¹ BX in total for ILC-NOM-500
- 2.0 · 10¹¹ BX in total for ILC-LOWP-500

Neutron fluence (no NIEL scaling applied yet)

- $(2.3 \pm 4.0) \cdot 10^8$ neutrons / cm² for ILC-NOM-500
- (6.1 \pm 7.4) \cdot 10⁸ neutrons / cm² for ILC-LOWP-500

Neutrons in the VTX

Statistics for neutrons are rather low ...

TPC Hits

Mokka hits in the TPC (overlay of 100 BX)

Backscattering Sources

Origins of backscattered electrons and positrons which enter the inner parts of the detector

LowZ Absorber Studies

Varying LowZ absorber in front of BeamCal

ILD MDI Phone Meeting

BeamCal for 2γ Veto

Efficient detection of high energy electrons is essential for search experiments

BeamCal as Beam Diagnostics Instrument

			reconstructed			
bp	unit	nom.	$2mrad^*$	20mrad DiD	20mrad DiD + E_{γ}	14mrad antiDiD + E_{γ}
σ_z	$\mu { m m}$	300	300.75 ± 4.56	307.98 ± 4.72	299.80 ± 1.69	301.09 ± 1.65
ε_x	10^{-6} m rad	10	$11.99 \pm \textbf{7.61}$	— ± —	— ± —	9.94 ± 2.16
Δx	nm	0	4.77 ± 14.24	4.55 ± 8.14	4.57 ± 8.13	-3.84 ± 11.08
α_v	rad	0	$0.002 \pm \textbf{0.016}$	0.010 ± 0.025	-0.001 \pm 0.025	-0.071 \pm 0.017

- Analysis of pairs energy distribution leads to beam parameter determination
- GammaCal (further downstream) helps with this

Summary

- Background suppression
- Low angle instrumentation
- Background suppression works well
- LumiCal: Precision luminosity measurement via Bhabha scattering
- BeamCal:
 - Hermeticity to low angles $\rightarrow 2\gamma$ veto
 - Beam parameter determination
- Detailed design depends on full detector simulations which are very time consuming
- Engineering solutions exist on conceptual level

