
- How does GuineaPig work?
 - bunches are cut into slices which are moved longitudinaly and interact when they are in the same transverse plan

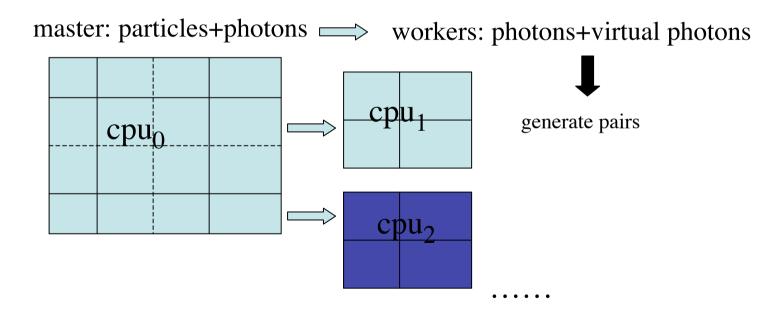
for each slice-slice interaction

- particles are distributed on the grid
- integration of the field equation
- particles are moved and photons are generated
- e-e+ interaction: luminosity, ...
- if asked
 - photons are distributed and moved on the grid
 - if asked, pairs are generated and moved

 runs with GuineaPig++ : total time consists of the elapsed real time between invocation and termination

- computation time (% of total time)

nx=32; ny=32; nz= 32


	nm= 10,000	nm= 100,000 particles
distribute particles	11.7%	2.3%
fftw	15%	0.5%
distribute photons	6.7%	15%
generate pairs	40%	80%
tracking pairs	22%	0.5%

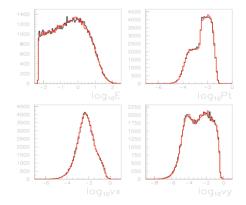
nx=32; ny=64; nz= 32

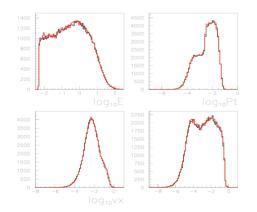
nm= 100,000

distribute particles	4.4%
fftw	1.7%
distribute photons	13.9%
generate pairs	76.82%
tracking pairs	0.86%

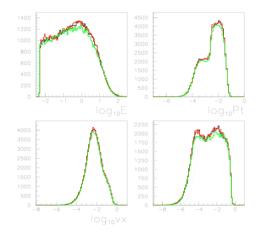
Distribute particles among processes
 – assign processes to each part of cells

with particles & photons received on each process, the pairs are generated

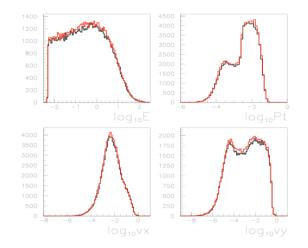

 track the pairs, assuming the field is known on each process


- Tests for 2 types of decomposed domain:
 - domain is divided into 4 parts [0,nx/2]x[nx/2,nx]U[0,ny/2]x[ny\2,ny] and each part is assigned to a process (type 1)
 - cells are distributed on processes taking into account the number of particles in the cells. A good distribution of the load on each process is expected (type 2)

On the figures are plotted logarithmic distributions of pairs energy,transverse momentum,velocities vx and vy produced with g++ and with the two types of decomposition and using 1 or 4 processes (CPUs)


type1: 1cpu(in black)/4 cpus(in red)

type 1(in black)/type 2 (in red)



type 1(in black)/type 2 (in red)
&gp++(in green)

gp++(in red)/type 1(in black)
with 100,000 particles

• expect good speedups:

test with 100,000 particles and a grid dimension with nx=32;ny=64;nz=32

- g++ 1635s
- type 1 with 4 CPUs = 606s (63%)
- type 2 with 4 CPUs = 936s (43%)

- Conclusion
 - transfert of particles are accomplished in MPI
 - focuse on others approaches in the distribution of particles