

Higgs mass measurement through μ channel of Higgs strahlungs process (e⁺e⁻ \rightarrow HZ \rightarrow µµH)

Manqi Ruan Discussing & Support: Francois, Roman, Vincent, Advisor: Z. ZHANG (LAL) & Y. GAO (Tsinghua))

- Motivation & Software introduction
- Higgs Mass & Xsection determination
 - Model independent Measurement
 - Model dependent event selection: treat Higgs SM/invisible decay separately
 - Result for SM Higgs
 - Result if Higgs can decay invisibly
- Test of Higgs mass measurement with different beam parameters
- Summary

12/12/2007

Motivation:

• Higgs strahlungs process:

Higgs Recoil Mass

$$m_h^2 = s + m_Z^2 - 2E_Z\sqrt{s}$$

• X section measurement: coupling strength

$$g^2 \propto \sigma = N / L \varepsilon$$

12/12/2007

LAL@ILD phone mee

Motivation: Why Higgs strahlung:

Only muon momentum information is needed in Higgs strahlung channel analysis

A *model independent* (without any assumption on Higgs decay) analysis can be applied

Any potentially model dependent cut will not be used here

Sqrt(s) = 230GeV:

Beam polarization will increase the signal cross section by 58%. (electron 80%, positron, 40%) ISR effect will reduce the cross section with sqrt(s)<300GeV (threshold effect) while increase it a little at higher energy

Recall the analytic form of error on Higgs mass:

$$\delta m_h^2 = sqrt\{((4Ep_1 - m_Z^2)p_1k(p_1))^2 + ((4Ep^2 - m_Z^2)p_2k(p_2))^2\} \sim p^2;$$

Small sqrt(s) means better Higgs mass resolution!

12/12/2007

Software chain

- Generator: whizard-1.50 (for Signal), pythia 6.4.13 (for background) (with Guinea-Pig to simulate BS effect);
- Full Simulation: Mokka-v06-04. with LDC01_sc detector conception (184 TPC layer), the accuracy of tracking system to 5E-5 at δ(1/P) on average
- Reconstruction & Analysis: MarlinReco/Marlin, ROOT;
- Fit: RooFit package

X section of main BG

Sqrt(s)	230GeV	250GeV	350GeV
ZH(fb)	6.62 (3310 evt)	7.78 (3890)	4.87 (2435)
ee→ZZ (fb)	1.34k (672k)	1.27k (635k)	0.856k (428k)
ee→WW (fb)	15.86k (8M)	15.61k (7.81M)	1.155k (5.77M)
ee→qq (fb)	57.6k (28.8M)	52.2k (26.1M)	22.63k (11.3M)

- Huge SM Background: Pre Cuts is needed!
 - Energetic pion/muon (E1>15GeV) (pions are included here for the PID have a chance ~1% to misidentify the a pion as a muon)
 - Exist another pion/muon (with energy E2), together with the most energetic pion/muon to form a invariant mass > 70 GeV
 - *Kinetic cut:* 2E1+E2<180&&2E1+3E2>200
 - $-\cos(\theta_{mumu})>-0.95$

Non-Polarized beam at 500 fb⁻¹; ISR, BS actived. **no FSR yet**

qq background

- 3 Pre cuts to reduce the qq back ground
 - Energetic muons > 15GeV
 - Invariant mass of Muons > 70 GeV
 - $-\cos(\theta_{mumu}) > -0.95$
- A few hundreds qq Events survive, far from signal region (115 -140GeV): qq back ground vanishes after pre cut selection

12/12/2007

Z decay ratio: $\sim 3\%$ to lepton pairs (each),

Gray: background for Higgs invisible decay through tau leptonic decay

Light green: background for Higgs SM decay

Red, pink and light blue: possible background for Higgs SM decay (pion be misidentified as muon & muon from bb, cc)

Yellow and Dark Green: background for Higgs SM decay: $H \rightarrow \tau \tau$

Cuts Chain for model independent analysis

	ZH	ZZ	WW
Total event num at 500 fb ⁻¹	3310	672k	8M
Expected event num after preCuts	3.0k	17.3k	96.6k
Reconstructed event num after recover precut	2365	8132	4335
cos(θ) <0.99	2363	8123	4329
Event num in signal region (115- 140GeV)	2351	2176	2583

Recover pre cuts with more strict cuts:

12/12/2007

S+B locate at signal region & Gaussian BK

Fit 2 parameters with likelihood method : mH & Fraction

Likelihood fit of Fraction & Higgs Mass for Model independent analysis

- By a simple judgment on multiplicity, we can separate the Higgs SM/invisible decay events with 2 obvious benefits
 - Larger S/N ratio and thus better measurement
 - Freedom to tune cuts for different decay models
- If N_track < 4, (Higgs invisible decay), no pre cut
- If N_track > 3, (SM Higgs decay), apply the previous pre cuts & cut chain
- Combine the result from SM/invisible Higgs assumption together

Higgs SM decay

Current muon id efficiency ~ 93.6% purity ~ 99% (O.Martin, RDR)

LAL@ILD phone meeting

Cuts Chain in Higgs SM decay

	ZH	ZZ	WW
Total EventNum at 500 fb ⁻¹	3310	672k	8M
Precut & Both muon identified	2714	8638	400
cos(θ) <0.99	2710	8621	400
<i>E_{mu}>20</i>	2693	8531	318
$2E_1 + E_2 < 178 \& 2E_1 + 3E_2 > 202$	2672	7218	289
cos(θ _{mumu})>-0.95	2462	7022	259
<i>m_z-m_{lepton}</i> <10	2363 (71.4%)	5739	80

Require both muon be identified will reduce our efficiency by ~17%, but also reduce greatly the back ground \rightarrow a muon is more easily to be misidentified in forward region

Cut applied on the reconstructed data is more strict than the pre cut at MC truth level

S+B after cuts & Gaussian like background

Fit 2 parameters with likelihood method : mH & Fraction

12/12/2007

Higgs Invisible decay

Exotic Model beyond SM: SUSY? Extra dimension? Heavy neutrino?

...

Main background

 $e^+e^- \rightarrow WW, ZZ \rightarrow \mu\mu\nu\nu$

not require both muon identified to save statistic

12/12/2007

LAL@ILD phone meeting

Cuts Chain in Higgs invisible decay

	ZH	ZZ	WW
X Section (fb)	6.62	15.42	207.96
Total EventNum at 500 fb ⁻¹	3310	7710	103980
Reconstructed event num & efficiency (with mH resolved)	3260 (98.5%)	7614 (98.8%)	96661 (93.0%)
cos(θ) <0.99	3230 (97.6%)	7566 (98.1%)	96157 (92.5%)
m _z -m _{lepton} <10	3091 (93.4%)	7134 (92.5%)	11570 (11.1%)
E _{mu} >20	3091 (93.4%)	7129 (92.5%)	11570 (11.1%)
cos(θ _{mumu})<-0.4	3091 (93.4%)	4765 (61.8%)	6868 (6.61%)
Total energy<110	3086 (93.2%)	1762 (22.9%)	4827 (4.64%)
Cut on W mass resolve: (2 <ratio<4)< td=""><td>2874 (86.8%)</td><td>1165 (15.1%)</td><td>3278 (3.15%)</td></ratio<4)<>	2874 (86.8%)	1165 (15.1%)	3278 (3.15%)

S+B after cuts & Gaussian like background

12/12/2007

Fit 2 parameters with likelihood method : mH & Fraction

For arbitrary Br(inv)

Combination the result from Higgs invisible and visible decay (Br(inv) + Br(visible) =100%) Red, invisible part contribution Blue, visible part contribution Green, overall result

Comparison on effect of different analysis strategy

For Higgs Mass Measurement, the accuracy is improved by ~15% with using the Separate strategy; while for the cross section measurement, no obvious improve

The separate strategy achieves best resolution while 100% Higgs decay invisibly (High reconstruction efficiency)

Changing beam parameters

- For Linear collider, we can
 - Change beam parameters (eg, changing $\sigma_z \beta_x \beta_y$ as ~ E_{cm}) to maintain the same luminosity (and also same Beamstrahlung), which is the current strategy we applied on our Full simulation analysis. But this is technologically hard to achieve
 - Keep beam parameter constant, we have L ~ E_{cm} ; BS ~ E_{cm}^2 ; while for small E_{cm} , we suffer more from the weak field reduction, and thus have less than 230 fb⁻¹ the integration luminosity if scale the machine time to achieve 500 fb⁻¹ luminosity for 500GeV nominal beam, but also much smaller Beamstrahlung.
 - Some strategy in between above 2
- Use toy MC (Generator + hand made fast simulation) to test accuracy of Higgs mass measurement with tentative beam parameter provided by BDS group

Points on beam parameter space yet scanned

Sqrt(s) /GeV	230	230	250	250	350	350	350	350
L* /m	3.5	4.5	3.5	4.5	3.5	4.5	3.5	4.5
B _x /nm	22.7	29.2	20.9	26.9	15.0	19.2	20.3	20.5
ColliX	6	6	6	6	6	6	7.0	6.2
η _L /percent	80.7	77.0	83.0	79.5	90.1	87.8	90.1	87.8
L /10 ³⁷ m ⁻² s ⁻¹	6.70	5.55	7.93	6.54	14.7	12.4	12.4	12.1
L /fb⁻¹	181	150	214	177	397	335	335	327
σ /fb	7.03	7.06	7.81	7.83	4.80	4.80	4.78	4.80
Exp event num	1272	1059	1671	1386	1906	1608	1601	1570
δ(mH) /MeV	22.4	24.7	32.8	31.9	107.2	109.1	115.2	117.5

Machine time had been set to make Nominal beam (500GeV) reach an integrated Luminosity be 500 fb⁻¹

 $\eta_{L:}$ weak field reduce factor on Luminosity. $L_{true} = L_{geo} * H_D * \eta_L$ ColliX: Collimator depth X, always bigger than 6

12/12/2007

24

Sample Gaussian fit to the core; L* = 3.5m

Sample Gaussian fit to the core; L* = 4.5m

- Accuracy of Higgs mass and cross section measurement through ee→HZ→Hµµ with Higgs SM decay and Higgs invisible decay assumption have been studied.
- Condition: 120GeV Higgs. Non polarized beam (with ISR & BS) with an integration luminosity of 500 fb⁻¹
- Two strategies had been applied:
 - Model independent Higgs mass measurement: $\delta(mH) = 22MeV$
 - Treat SM/Invisible decay Higgs separately: $\delta(mH)$ could be measured better than 19MeV.
 - Cross section measure to 3% level for both strategies
 - Overall reconstruction efficiency is 71.4% for SM Higgs decay case (same for model independent analysis), and 86.8% for Higgs invisible decay
- It is foreseen to improve a lot with beam polarization for it will not only reduce the WW background but also increase ~58% the cross section of Higgs strahlung channel (electron, 80%, positron, 40%).
- To do: adding the FSR effect, background from ZH events (with H→bb→mumuX, etc.) & further optimization for the Cuts
- With beam parameter suggested by BDS group, best higgs mass measurement achieved at sqrt(s) = 230GeV

12/12/2007

Back up

Momentum resolution vary with energy: 10°, 15°, 20°, 30°, 40°, 60°, 80° polar angle: yellow curve is the Fast simulation result from M.Berggren

 Thanks to hengne's work on the SIT radiation length, we have gain a factor of 5% improvement in the mu momentum resolution ⁽²⁾ Efficiency vary with energy & Polar angle (10, 15, 20, 30, 40, 60, 80 Degree)

12/12/2007

S+B for model independent analysis

31

S+B for Higgs SM decay. Br(SM)=100%

S+B for Higgs invisible decay. Br(inv)=100%

Higgs Recoil Mass Spectrum (Reconstruction efficiency ZH: 98.5%, ZZ: 98.8%, WW, 93.0%)

Fit Algorithm

- Generate 2 samples with mH=119GeV and mH=121 GeV assumption (currently 10k statistic each).
- Getting PDF f(119,m), f(121,m): smooth the Higgs recoil mass spectrum to a PDF function.
- Assume the higgs mass is m_a (119< m_a <121); then the expected PDF f(m_a,m) will be a linear combination of f(119,m-(m_a-119)) and f(121,m+(121-m_a)): (Shift the PDF(119) & PDF(121) to expected position and make a linear combination)

$$\begin{split} f(m_a) &= 0.5^*((m_a - 119)^* \ f(121, m + (121 - m_a)) \\ &+ (121 - m_a)^* \ f(119, m - (m_a - 119)) \) \end{split}$$

• Use likelihood method to fit m_a

How the likelihood method works:

Red/Green/Blue: Smoothed mH Spectrum with mH=121/120/119 assumption and original Histogram (show in error bar); Yellow: expected PDF at mH=120, calculated from f(119) and f(121) \rightarrow match to the sample (Green) nicely.

10k statistic for mH=121 & mH=119 cases; 6k statistic for mH=120 case. ³⁶

mH measurement with no background IO test at 500fb⁻¹

Use toy MC provide by RooFit:

Num of events per run is determined By a gaussian distribution Gaus(N, sqrt(N)). Totally 500 run

Error on mH nicely agreed with Error on sample means distribution: IO test fine

Fit 2 parameters with likelihood method : mH & Fraction

IO test with toy MC at 500fb⁻¹. Br(invisible) = 100%. 1000 Samples

X Section measurement Br(inv)=100%

- TotalEventNr*fraction=BranchingRatio*efficiency*luminosity*Xsection
- Efficiency = 86.83%; luminosity = 500 fb^{-1}
- Result: 6.613±0.181 fb. Accuracy at 2.7% level LAL@ILD phone meeting

Effect of individual Cuts for Higgs invisible decay

	ZH	ZZ	WW
X Section (fb)	6.62	15.42	207.96
Total EventNum at 500 fb ⁻¹	3310	7710	103980
Reconstructed event num & efficiency (with mH resolved)	3260 (98.5%)	7614 (98.8%)	96661 (93.0%)
cos(θ) <0.99	3229 (97.6%)	7566 (98.1%)	96157 (92.5%)
m _z -m _{lepton} <10	3120 (94.3%)	7175 (93.1%)	11626 (11.2%)
E _{mu} >20	3248 (98.1%)	7584 (98.4%)	94128 (90.5%)
cos(θ _{mumu})<-0.4	3211 (97.0%)	5123 (66.4%)	74202 (71.4%)
Total energy<110	3253 (98.3%)	2056 (26.7%)	25107 (24.1%)
Cut on W mass resolve: (2 <ratio<4)< td=""><td>2956 (89.3%)</td><td>1407 (18.2%)</td><td>32444 (31.2%)</td></ratio<4)<>	2956 (89.3%)	1407 (18.2%)	32444 (31.2%)

Cut on W mass resolve: (2<Ratio<4)

Higgs Recoil Mass Spectrum at sqrt(s)=230GeV, with different L*

